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1 Introduction

Graphics Processing Units (GPUs) have been evolving at a rapid rate in re-
cent years, partly due to increasing needs of the very active computer graphics
development community. The visual computing demands of modern computer
games and scienti�c visualization tools have steadily escalated over the past two
decades (Figure 1). But the speed and breadth of evolution in recent years has
also been a�ected by the increased demand for these chips to be suitable for
general purpose parallel computing as well as graphics processing.

In a campaign that has been perhaps most aggressively pushed by the com-
pany NVIDIA (one of the leading chip designers), GPUs have moved closer and
closer to being general purpose parallel computing devices. This movement be-
gan in the computer graphics software research community around 2003 [15], and
at the time was called General Purpose GPU (GPGPU) computing [16, 20, 8].
Using graphics APIs not originally intended or designed for non-graphical ap-
plications, many data parallel algorithms, such as protein folding, stock options
pricing Magnetic Resonance Image (MRI) reconstruction and database queries,
were ported to the GPU.

This prompted e�orts by chip designers, such as NVIDIA, AMD and Intel to
produce architectures that were more �exible with more general purpose com-
ponents (perhaps the most notable change has been the uni�ed shader model).

This blurring of roles between the CPU (which, in the past, has been con-
sidered the primary general purpose processor) and the GPU has caused some
interesting dynamics, the full rami�cations of which are not yet clear. GPUs
are becoming much more capable processors, and unlike CPUs, which are strug-
gling to �nd ways of improving speed, their raw computational power increases
dramatically every generation, as they add more and more functional units and
�processing cores�. CPUs are also adding cores (most CPUs are now at least
dual-core), but at a much slower rate. Still, CPUs are much more suited to
certain tasks where there is less potential for parallelism. In any case, GPUs
and CPUs seem to be engaged in some sort of co-evolution.
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Figure 1: On the left is a screenshot of the game System Shock released in 1999.
The improvement in graphical quality between this and the 2008 game, Crysis
(right), illustrates the increasing demands of the computer graphics development
community.

In this work, we hope to explore how GPUs di�er from CPUs, how they are
evolving to be more general purpose, and what this means for both classes of
processors. The remainder of the paper is organized as follows: In Section 2
we brie�y cover the history of the GPU to give some context for it's role in
computing. We then examine what the chip structure looks like for both GPUs
and CPUs and how the former has evolved in Section 3. In Section 4 we cover
the data pipeline in the GPU, and how it works for graphics and general purpose
computing. Section 5 examines the GPU memory hierarchy, and Section 6, the
instruction set. Finally, we cover some applications of general purpose GPU
computing in Section 7, and give our conclusions in Section 8.

2 History of the GPU

The modern GPU has developed mostly in the last �fteen years [19]. Prior to
that, graphics on desktop computers were handled by a device called a video
graphics array (VGA) controller. A VGA controller is simply memory controller
attached to some DRAM and a display generator. It's job is essentially to receive
image data, arrange it properly, and feed it to a video device, such as a computer
monitor. Over the 1990s, various graphics acceleration components were being
added to the VGA controller as semiconductor technology increased, such as
hardware components for rasterizing triangles, texture mapping, and simple
shading. And in 1999, NVIDIA released the �GeForce 256� and marketed as
the world's �rst GPU. There were other graphics acceleration products on the
market at the time (by NVIDIA itself, as well as other companies such as ATI,
and 3dfx), but this represented the �rst time the term GPU was used.

The �rst GPUs were �xed-function throughput devices, essentially designed
to take a set of triangle coordinates, and color, texture, and lighting speci�-
cations, in order produce an image e�ciently. Over time, GPUs have become
more and more programmable, so that small programs (called shaders) can be
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Figure 2: NVIDIA GPU raw computing power in GigaFlops relative to time
alongside Intel CPU computing power. AMD (not shown), the other major
GPU designer, has made gains similar to that of NVIDIA.

run for each triangle, vertex and pixel processed, vastly expanding the kinds
of visual e�ects that can be generated quickly (re�ections, refractions, lighting
detail). This is in addition to the huge increase in raw parallel computing power
(Figure 2), dwar�ng the CPUs gains in this area, although the two technologies
are clearly optimized for di�erent applications.

Increasingly, logic units dedicated for special purposes, such as vertex pro-
cessing or pixel processing, have given way to more general purpose units that
can be used for either task (the uni�ed shader model standardized the instruc-
tion set used across vertex and pixel shaders, so that only one type of logical
unit was needed). Computation has also become more precise over time, moving
from indexed arithmetic, to integer and �xed point, to single precision �oating
point, and most recently double precision �oating point storage and operations
have been added. GPUs have essentially become massively parallel computing
devices with hundreds of cores (ALUs) and many more threads.

In the past �ve years, the instruction set and memory hardware have also
been expanded to support general purpose programming languages such as C
and C++. So it is clear, that, although they may still have some limitations
relative to CPUs (more restrictive memory access, etc.), GPUs are becoming
more and more applicable to a great many more purposes than those for which
they were originally intended; and this trend is likely to continue [5].

It is worth noting (since it has a�ected the development of and the literature
on the GPU so dramatically) that although when the market started there
were upwards to twenty companies competing with each other, the �eld has
since narrowed signi�cantly. Now only Intel, NVIDIA, and AMD (formally
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AMD's GPU division was the company ATI) are serious competetors in the
GPU market, and only NVIDIA and AMD develop high-end graphics cards [10].

3 Modern Chip Structure

GPU Chip layouts have undergone a great deal of reorganization and re-purposing
over the past few years, trending towards general purpose computing; this is in
addition to the huge increase in functional units. CPUs to a lesser degree, likely
because they must maintain the many advances they have made in reducing
latency (at a cost in die real-estate), and also because of the need to maintain
their compatibility legacy. However, CPUs have also been adding more cores.

3.1 Some GPU Chip Layout History

In this section, we cover an abridged history of the GPU chip structure (focusing
on NVIDIA chips), to give some context for more recent developments. The
earliest GPUs were very special purpose devices that performed �xed function
tasks like transformation and lighting, texture mapping, and rasterization of
triangles into pixels. From the programmers perspective, one could set a few
options, and pass them lists of triangles, vertices, textures and virtual lights
and cameras to be processed. The story became much more interesting when
GPUs started to become programmable (2000-2004) [19].

NVIDIA's 7800 (Figure 3) was one of the earlier GPUs to have both pixel
and vertex shaders. However, the processor �cores� (which contained the func-
tional units) were still divided up into vertex processors and fragment (pixel)
processors. This limited the �exibility of the chip somewhat, because there were
a �xed number of components that could be dedicated to particular tasks.

The uni�ed shader model was introduced in 2008, after which vertex and
fragment shaders relied on the same instruction set, and thus the same hard-
ware; there were no longer separate vertex and fragment processors. This can
be seen in NIVDIA 8800 chip (Figure 4). The processing power is essentially
divided up among eight Thread Processing Clusters (TPCs) each of which con-
tain two Streaming Multiprocessors (SMs). Each of these contains eight Scalar
Processors (SPs) which each contain their own integer ALUs and FPUs and can
run multiple threads. These are where most of the actual computation, for both
vertices and fragments (and the more recent geometry shaders, which process
triangles), takes place. Much of the chip is dedicated to getting an optimal
distribution of work to the processor hierarchy, and also to making sure the
processors have access to the right data.

3.2 NVIDIA's Fermi Architecture

NVIDIA's more recent chip, the Fermi architecture (Figure 5), has gone towards
a more general purpose design. The TPCs have been done away with, and
each of the 16 SMs is larger (Figure 6), and now contains two warp instruction
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Figure 3: NVIDIA's 7800 chip, released in 2005. Something to note here is how
the computing functionality is divided di�erent kinds of processing components,
as this chip design predates the uni�ed shader model. One of the vertex pro-
cessors is highlighted in red near the top, near the middle a fragment processor
is highlighted in blue, and a raster operator is indicated by a yellow box near
the bottom.
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Figure 4: NVIDIA's 8800 chip, released in 2008. All di�erentiation between
processors has been removed, and now there is only one kind of �streaming
multiprocessor�; This processor contains instruction cache and dispatch logic,
and 8 �scalar processors� which each contain an ALU and FPU.
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Figure 5: NVIDIA's Fermi Architecture. A close up of one of the SMs (high-
lighted in red) is shown in Figure 6.

schedulers, which issue instructions to two clusters of SP cores (or CUDA Cores)
respectively. Each SM also has it's own register �le, 16 load/store units, and 4
Special Function Units (SPUs), which perform functions such as sine and cosine.
This larger, more capable SM is aimed at being able to handle more general data
intensive parallel programs, such as those found in scienti�c computing, while
still maintaining the ability to e�ciently process graphical data.

This architecture has also added better and faster �oating point calculations,
a uni�ed address space, error-correcting code logic for memory and many other
features that make it all the more suitable for general purpose computing.

Something to note here is how large the di�erence in the total SPs in just
one generation of NVIDIA's product: The number of SMs has remained the
same, but the number of SPs has quadrupled. This trend is seen throughout
the graphics architecture development community, and it is one of the primary
di�erences between how GPUs and CPUs have been evolving: GPUs are always
using smaller transistor size to dramatically increase the number of processors,
aiming at ever-larger data throughput. CPUs, rather, focus on instruction Level
parallelism and reducing latency.
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Figure 6: A close of of one of Fermi's SMs. Note that the compute power
(number of cores) has quadrupled in comparison to the 7800 (Figure 3).
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3.3 Intel Core i7

Modern CPUs have a very di�erent distribution for for their chip layout; One of
Intel's latest chips is the Core i7 (Figure 7), and it is apparent from looking at
the die micrograph how much less emphasis is placed on raw computing power.
As CPUs add more cores, each core comes with all of the logic that has been
won through years of research, and at the expense of space for functional units
(Figure 8). This has both bene�ts as well as drawbacks; CPUs are much better
at performing a much larger array of tasks than GPUs, and are able to much
more e�ectively reduce latency for individual tasks.

It is clear that CPUs and GPUs have very di�erent priorities when it comes
to distributing silicon real-estate to di�erent functionalities. GPUs focus is
on increasing raw compute power, so that more primitives (vertices, triangles,
pixels) can be processed, and this large amount of throughput capability lends
itself to applications like scienti�c computing, which is why GPU companies are
courting those markets. For CPUs on the other hand, the focus has always been
on reducing latency for serial tasks.

It is unlikely that either approach will become unnecessary; both devices
�ll important niches in the market. But perhaps they will continue to grow
closer together and cooperate more and more. Indeed, the NVIDA Tegra chip
(designed for mobile phones) already has a GPU and a CPU on the same piece
of silicon (Figure 9).

4 Data-�ow

GPU hardware is designed to compute operations on millions of pixels using
thousands of vertices and large textures as inputs. The pixels must be presented
at a frame rate of approximately 60 Hz to be smoothly presented to the human
eye. These requirements lead to two properties of GPUs in general: very high
throughput and very high latency compared to CPUs. The requirement of large
throughput is self-explanatory. Large latencies are allowed because delays on
the order of milliseconds are not detectable by the human eye, especially if the
delays are within the computation time of a single frame, in which case they
are completely hidden. The lack of stringent latency requirements has led to
extremely deep pipelines in GPU hardware to take advantage of the potential
increases to throughput. The entire graphics pipeline may take many thousands
of cycles to complete a single pixel value, but because of the pipeline depth, may
have throughput hundreds of times that of a CPU.

The main sections of a GPU pipeline are shown in Figure 10. Between
the year 2000 and 2001, shaders became able to run custom pixel-generation
code [13]. This led to interest from the scienti�c community in using the inher-
ently parallel and powerful GPUs for general-purpose computing. The vertex,
geometry, and fragment shaders (processors, cores, etc.) are the main pro-
grammable elements in the traditional graphics pipeline and are the processors
used in general-purpose GPU programming.
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Figure 7: A die micrograph Intel's Core i7, which uses the nehalem architecture
for each core (Figure 8). The Cores (on this chip there are four) are shown
in yellow. The portion of each core that is dedicated to actual computation is
highlighted in red.

Starting in 2006, the di�erent programmable shaders uni�ed their core in-
struction set [1] which allowed code to run in any portion of the graphics pipeline
independent of the type of shader type. With the introduction of the uni�ed
shader architecture (now known from the software perspective as Shader Model
4.0), the GPU becomes essentially a many-core, streaming multiprocessor with
raw mathematical performance many times that of a CPU. As of 2010, the
single-precision FP calculation performance of Nvidia's Fermi (1.5 TFLOP) and
AMD's 5870 (2.7 TFLOP) vastly surpasses that of CPUs. The transition to a
uni�ed shader model occurred primarily to ease load balancing [14], as present-
day games vary widely in the proportion of vertex or pixel shader usage. With
a uni�ed architecture, any shader can process data, leading to better utilization
of GPU resources.

5 Memory Hierarchy

There are signi�cant di�erences between the memory structure of GPUs and
CPUs. One reality that GPU manufacturers must deal with is the small amount
of cache available to each processor, due the large number of processors and lim-
ited space on the die. Cache hit rates are frequently much lower for GPUs than
CPUs (90% for the GeForce 6800 versus close to 100% for moden CPUs [12]).
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Figure 8: Intel's Nehalem architecture. Along with functional units for doing
actual computation, each core on also contains reservations stations, reorder
bu�ers, and complex branch prediction.
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Figure 9: NVIDIA's Tegra chip (designed for mobile devices, such as smart
phones) has a CPU, a GPU and image and HD video processing hardware all
on the same piece of silicon.

Figure 10: Simple sequential model of a graphics pipeline showing the three
main types of shader processors: vertex and fragment.

12



Figure 11: Typical CPU (top) versus GPU (bottom) cache hierarchy. Note the
larger size of the register array than both the L1 and L2 cache for GPUs.

This may seem like a crippling situation, but the high-latency nature of the
GPU pipeline can allow memory to be retrieved from a miss within acceptable
delay times. Furthermore, modern thread scheduling allows a new thread to
quickly take over the idle processor while it waits for the missing data to be
transferred from memory [4]. The relatively high miss rate of smaller GPU
caches coupled with the extremely memory-intensive nature of texture mapping
results in GPU designs that aim to maximize the available memory bandwidth.
There are requirements, however, for the shader programs that need to be met
in order to take full advantage of the high bandwidth capability of GPU mem-
ory. A a comparison of typical cache memory distribution for CPUs and GPUs
are shown in Figure 11.

The memory and pre-fetching hardware in GPUs is highly optimized toward
mapping of 2D arrays [7, 6], which are the format of textures. The memory
controller pre-fetches sets of data that correspond to the mapping of sequential
2D arrays (Figure 12), thus decreasing the miss rate by exploiting multidimen-
sional spatial locality. This is in contrast to the typical pre-fetching algorithms
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Figure 12: Sequential 2D texture memory block pre-fetching. Sequential ele-
ments in the array are pre-fetched, rather than sequential elements in memory.

of CPUs, which assume linear spatial locality. For example, to store a large
array in a GPU program, it would be �wrapped� in a 2D block for quick ac-
cess by the cache (Figure 13). There is a growing body of research literature
dealing with the modi�cation of various scienti�c computing programs toward
optimizing memory access based upon the existing pre-fetching hardware.

The nature of typical graphics demands on GPUs, such as gaming, is such
that a well-de�ned set of inputs (verticies, textures, lighting) is heavily processed
through thousands of cycles and then a result (pixel colors) are �nally written
at the end. Because of the lack of interleaving threads which are typical of CPU
programs randomly accessing memory, caches in GPUs are generally read-only.
They function primarily as a way to limit the number of requests to the memory
bus, the use of which is a precious and scarce resource, rather than to reduce
the latency of read/write misses [6].

6 Instruction Set

In comparing GPU instruction sets to modern CPU instruction sets, it is impor-
tant to consider the history of the GPU. Prior to the recent evolution of GPUs
toward general-purpose computing capabilities, the GPU was a �xed-function
resource, highly optimized to perform optimally those tasks that are relevant
to producing 3D graphics, such as vertex operations (assembling and shading
vertices into triangles) and fragment operations (texturing and coloring pixels).
Dedicated hardware performed each operation, and the instruction set was spe-
ci�c to each hardware section depending on what tasks it did. The recent shift to
general-purpose capabilities has resulted in a common set of hardware among
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Figure 13: Conceptual wrapping of a 1D array into a 2D cache block.
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Figure 14: Comparison of an array-increment operation on GPUs (left) and
CPUs (right).

all computing elements, and a uni�ed instruction set. Some special-purpose
hardware has remained, but all computing elements are capable of executing
code within the uni�ed instruction set which brings some important capabilities
to the previously limited set of common instructions [17]:

• Support for �oating-point calculations across all processors

• Arbitrary reading from memory

• Loops and conditional statements

With the common instruction set, as well as program space for custom vertex
and fragment code, a wide variety of programs can be implemented. In recent
years, double-precision FP units have become more and more common in com-
puting elements, increasing the range of options available for GPU programs.
The instruction sets have also been more and more optimized for running C-
code. From the early academic compilers like BrookGPU [2] to modern C-like
languages such as Nvidia's CUDA and AMD's Stream, there has been a constant
improvement in software tools year after year.

GPU instructions are inherently single-instruction, multiple-data (SIMD). In
producing graphics, shaders will run the same program on thousands of pieces
of data to do such tasks as apply �lters and calculate lighting. As an example of
how this would a�ect a CPU-to-GPU code transition, consider incrementing all
the elements in an array (Figure 14). On a CPU, the standard doubly-nested
loop would traverse the array and perform an operation on each element. In a
GPU, however, a single SIMD operation is able to operate on all elements in
parallel. A section of memory to which the operation will be applied is mapped,
and the operation simple executes if it is within the prescribed bounds. In
the left example of Figure 14, the code would be run on 16 processors, each
operating on a di�erent element.

Comparison of an array-increment operation on GPUs (left) and CPUs
(right).

There are other signi�cant di�erences between programs compiled for CPU
and programs compiled for GPUs. Branches incur a large penalty due to branch
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granularity; all elements in a computational block that share register memory
(i.e. Nvidia's thread processing clusters) are forced to compute both sides of
a branch if di�erent elements branch in di�erent directions, which forces the
threads to become serial until the code paths converge again. The number of
elements in the block is known as the branch granularity. The branch granular-
ity results in very large branch penalties (compared to CPUs) that cannot be
overcome by software optimizations, if the programmer desires each element to
compute a di�erent branch.

A recent innovation in exploiting parallelism is single-instruction, multiple
thread (SIMT) instructions. SIMT add capability to ignore the SIMD instruc-
tion width and instead specify only the behavior of a thread, which can then be
dynamically scheduled with others. Modern techniques such as warp scheduling
SIMT instruction help alleviate the branch divergence penalty to some extent
by dynamically rearranging the threads available to compute [4], but it does not
eliminate the problem altogether.

An instruction set di�erence which is slowly disappearing is the prevalence
of �hacks� in the architecture of GPUs to increase speed at the cost of �oating-
point accuracy [9, 17]. In modern GPUs, IEEE 754 �oating-point precision is
becoming standard [13] with greater demands for true algorithm compatibility.

7 Applications

There are speci�c computing applications which are particularly suited to GPU
implementation. To take full advantage of the unique resources of GPUs, a
program should have some of the following characteristics:

• Large amounts of inherent parallelism

• Requirement of large throughput (i.e. real-time computation)

• Linear code execution with minimal branching between threads

• High density of mathematical operations (i.e. �nite-element models or
solving very large sets of di�erential equations)

• Threads with identical but data-independent code (i.e. physics simulation
or molecular dynamics, which compute the same model on many objects)

Early work in GPU computing produced very fast programs for solving large
sets of di�erential equations, such as for the Navier-Stokes �uid �ow equations.
Applications which have found particular utility in the computing power of
GPUs include:

• Solving dense linear systems: large linear systems comprise a huge por-
tion of scienti�c computing, and often result in the largest computational
penalties.
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• Sorting algorithms such as the bitonic merge sort: sorting algorithms are
not typically thought of as parallel operations, except for bitonic sorts, in
which GPUs perform excellently.

• Search algorithms such as binary search: Per unit of energy spent, GPUs
are quite e�cient at sorting. Applications such as search engines and
databases may bene�t from e�cient search capabilities.

• Complex physical simulation such as protein folding: there are many un-
solved problems in the medical community with regard to simulation of
protein behavior. Access to very low cost per TFLOP computing power
such as GPU arrays could possibly increase the pace of solutions.

• Real-time physics in games and rendering: throughput dominates the com-
putational demand in real-time applications involving many elements such
as in games.

• N-body simulations: these can be broken down into parallel few-body
problems and computed separately before combining

These are applications that have all been solved by CPUs and supercomput-
ers in the past. However, GPUs are much more a�ordable than large clusters
of CPUs, and are already needed for common graphics demands.

8 Conclusion

The recent additions which have made general-purpose computation possible
have been largely toward CPU-like elements, such as universal �oating-point
capability, loops, conditionals, and instruction set compatibility with C-like
compilers.

GPUs and CPUs still �ll di�erent niches in the market for high performance
architecture. GPUs are built for large throughput, and running fairly simple,
but costly programs, but despite their general purpose aspirations, are still
designed to be optimal for a very speci�c purpose. CPUs, on the other hand
are designed to lower latency in a single task as much as possible, can handle
the most complex programs with ease, but still lag behind GPUs when large
amounts of simple calculations can be done in parallel.

Both will likely always be needed; it is unlikely that the need for either
approach will ever disappear. But the distinctions are certainly beginning to
blur. The variety of demand for computational power will likely produce more
innovations that bring computation paradigms across the GPU-CPU border.
Having a highly parallel, high throughput computation resource like the GPU
easily available and accessible in addition to the ubiquitous CPU on modern
PCs will allow the best of both worlds to be realized.
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