
Robotics and Autonomous Systems 60 (2012) 803–821
Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Robotics software frameworks for multi-agent robotic systems development

Pablo Iñigo-Blasco, Fernando Diaz-del-Rio ∗, Ma Carmen Romero-Ternero, Daniel Cagigas-Muñiz,
Saturnino Vicente-Diaz
Escuela Técnica Superior de Ingeniería Informática, University of Seville, Avda. Reina Mercedes s/n, 41012, SEVILLE, Spain

a r t i c l e i n f o

Article history:
Received 25 July 2011
Received in revised form
2 February 2012
Accepted 6 February 2012
Available online 13 February 2012

Keywords:
Robotics
MAS
Agents
Software frameworks
Middleware
Architecture

a b s t r a c t

Robotics is an area of research inwhich the paradigmofMulti-Agent Systems (MAS) can prove to be highly
useful. Multi-Agent Systems come in the form of cooperative robots in a team, sensor networks based on
mobile robots, and robots in Intelligent Environments, to name but a few. However, the development
of Multi-Agent Robotic Systems (MARS) still presents major challenges. Over the past decade, a high
number of Robotics Software Frameworks (RSFs) have appeared which propose some solutions to the
most recurrent problems in robotics. Some of these frameworks, such as ROS, YARP, OROCOS, ORCA,
Open-RTM, and Open-RDK, possess certain characteristics and provide the basic infrastructure necessary
for the development of MARS. The contribution of this work is the identification of such characteristics
as well as the analysis of these frameworks in comparison with the general-purpose Multi-Agent System
Frameworks (MASFs), such as JADE and Mobile-C.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

At the end of the last century, industrial robotic systems were
oriented toward the mass production of products in factories,
where robots of high precision were destined to carry out
repetitive individual work in controlled environments. However,
the current tendency is toward robotic systems that must be
capable of solving problems in environments that are more
complex and less controlled. To this end, robotic systems are
needed that are more autonomous and intelligent.

Some of these systems are mobile teams of autonomous robots
where a set of robots works as a group to attain a common
objective [1,2]. These systems require cooperative, social robots,
which can move in dynamic, complex uncontrolled environments,
where the capacity to understand and interpret the surrounding
world is their prime challenge.1 As a consequence, the complexity
of the software architecture increases and the computing needs
soar. In these software architectures, the scalability, reusability,
efficiency and fault tolerance play a fundamental role. The system
software architecture must be designed in a distributed and
modular way. These systems must nevertheless continue to

∗ Corresponding author. Tel.: +34 954 55 61 44; fax: +34 954 55 28 99.
E-mail addresses: pabloinigo@us.es (P. Iñigo-Blasco), fdiaz@us.es,

fdiaz@atc.us.es (F. Diaz-del-Rio), mcromerot@us.es (M.C. Romero-Ternero),
dcagigas@us.es (D. Cagigas-Muñiz), satur@us.es (S. Vicente-Diaz).
1 Henceforth, these will be referred to as complex robotic systems.

0921-8890/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2012.02.004
take classic problems of industrial robotics into account, which
are closer to the sensors and actuators, such as the real-time
requirements in their lower levels. The principal characteristics,
which the software architecture (and its components) of a complex
robotic system must cater for, are then enumerated [3–9]:

• Concurrent and distributed architecture. It is necessary to be
able to take advantage of all the processing units available in
a concurrent way (processors, multi-processors and microcon-
trollers) in order to cover all the computational needs that a
complex robotic system presents. Due to the consequent sys-
tem complexity, a powerful remote inspection (also known as
introspection) mechanism is needed.

• Modularity. The software architecture is formed of several com-
ponents of high cohesion and low coupling. The components
interact with each other; however, the dependences must be
kept at a minimum in order to obtain a maintainable, scalable,
and reusable architecture, which is adaptable to changes and
improvements. Although these are desired features in all soft-
ware architectures, they are especially important in Robotics,
where the lack of standards and the closeness with the hard-
ware have made robotics software prone to be non-reusable
and non-scalable for succeeding decades. The need for a well-
designed common robot hardware interface is another related
feature.

• Robustness and fault tolerance. The malfunction of a component
must not completely block the whole system. On the other
hand, the rest of the system must be capable of continuing to
work as best it canwith the resources available on the condition

http://dx.doi.org/10.1016/j.robot.2012.02.004
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:pabloinigo@us.es
mailto:fdiaz@us.es
mailto:fdiaz@atc.us.es
mailto:mcromerot@us.es
mailto:dcagigas@us.es
mailto:satur@us.es
http://dx.doi.org/10.1016/j.robot.2012.02.004


804 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
that it is working toward achieving the objectives. To this end,
the rest of the components (still in working order) must be
capable of acting on their own initiative and autonomously
make decisions to overcome these situations. These decisions
must be taken based on cooperation with other agents of the
system or on the specific information they possess.

• Real time and Efficiency. The majority of robotic systems
have some type of real-time constraints. These restrictions
are problematic in distributed software architecture. Efficiency
is also a common requirement, especially when a robotic
systemhas limited communication and computation capacities.
Hence the design of the architecture must consider the use of
software, hardware, communicationmechanisms andprotocols
that guarantee compliance with these restrictions.

Hence, the main reasons why MAS are a good choice for robotics
software architecture are that, when using this approach, the
resultant software is much more reusable, scalable and flexible
whilst the parallelism, robustness and modularity requirements
are maintained. This approach is demonstrated through its
successful application in multiple areas in Robotics (which will
be studied in the Section 2). Indeed, Multi-Agent Robotic Systems
(MARS) have been widely studied over recent years and related
events exist in the form of competitions such as RoboCup [10], and
of workshops such as ICINCO-MARS [11].

Technologies are available that enable the development of
general-purpose MAS which will be referred to as MASFs (Multi-
Agent System Frameworks) in this work. These technologies
include: JADE [12], Grasshopper [13], JACK [14], Cougaar [15],
ADE [16], andMobile-C [17]. JADE is the de facto solution for various
reasons, most importantly that it was the first to implement
the MAS specification defined by FIPA2 and was an Open-Source
solution both accepted and supported by the MAS developers’
community [12]. These technologies have been used successfully
during the past few years. However, whilst they present a valid
approach for robots, their use has not been focused on the
development of robotic systems but rather on other areas such
as Web services, e-commerce, domotics, sensor networks, social
simulation, finances and e-learning.

On the other hand, ‘‘Robotics Software Frameworks’’ (RSFs)
[4,18–20] attempt to provide an integral solution through a set
of generic tools and off-the-shelf libraries with algorithms and
controllers useful to create a general-purpose robotic systems,
thereby avoiding to continually reinvent the wheel. On occasions,
these frameworks are known as ‘‘Robotics Middleware’’ or
‘‘Robotics Software System’’. In the present study, we refer to these
as ‘‘Robotics Software Frameworks’’ (RSFs).

Currently, MASFs and RSFs offer tools and solutions that are
similar in many aspects, especially in those focused on distributed
communications architecture. This overlapping between RSFs and
MASFs is represented in light gray in Fig. 1. The software infras-
tructure essential forMAS development is already implemented by
some RSFs: support for the development of P2P (Peer to Peer) dis-
tributed architectures, inter-agent message-passing methods, or
Yellow Pages service. For that reason these RSFs already present
suitable infrastructure for the development of MARS.

In this study, most widespread technologies that enable the
development of software architectures of MARS will be enumer-
ated and analyzed. The most significant common characteristics
are explained, with particular attention paid to those character-
istics that a robotics framework must include so that it is adapt-
able to the MAS paradigm. Furthermore, a comparative study will

2 FIPA (Foundation for Intelligent Physical Agents) is an IEEE Computer
Society standards organization that promotes agent-based technology and the
interoperability of its standards with other technologies.
Fig. 1. Robotics software frameworks and multi-agent system frameworks.

be presented that can serve as a reference for the choice of one of
these technologies in a real project. Finally, some interpretations of
the most significant characteristics and the shortcomings of these
technologies are expounded.

The structure of the document is as follows: In Section 2, the
fields of application for the Multi-Agent Robotic Systems (MARS)
are explained. In the Section 3 the definition of a Robotics Software
Framework (RSF) is given together with its characteristics, and
the MASFs are presented in the context of robotics. Under the
heading ‘‘MainAspects of Frameworks’’, the criteria for comparison
between the various RSFs are specified. In the following section,
each framework is described and a series of tables that summarizes
the comparative results is presented. In the final section, an
interpretation of the comparison is carried out with emphasis on
the points in common and the deficiencies in the frameworks
presented.

2. On the relationship between multi-agent systems and
robotic systems

2.1. Multi-agent system definition

In the context of MAS, a general definition of agent could be
‘‘an autonomous proactive and social software component’’ [21].
The agents are autonomous, possess their own thread of control
and are independent from other processes. The agents can be
reactive but can also be proactive. In addition to responding to
other messages or external events, the agents may sometimes
take the initiative and change their behavior in order to attain
their objectives [21]. Proactivity needs agents of a more intelligent
nature. This intelligence may or may not be attained through
learning. Less ability to learn usually implies more reactive agents
whereas more ability to learn usually implies agents of a more
proactive nature. The more uncertainty or complexity within the
problem to be resolved, the more intelligence the agents should
have, and also the greater the capacity to learn is required.
Many authors have defined cognitive models [22–29], or cognitive
architectures [30–40,22], that allow automatic learning. It is also
important to take into account how the interaction between
agents can help toward the learning process and toward the
improvement of the problem solution. To this end, social aspects
are considered by many authors in the design of the multi-agent
system [29,41–46].



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 805
Hence, given the aforementioned characteristics and the
robotics software architecture constraints, a solution based on
the multi-agent paradigm is highly suitable for the design of a
complex robotic system. The software architecture of the robotic
system would therefore be formed of distributed nodes (Agents),
which communicate and cooperate in order to attain the general
objectives. This approach makes this architecture much more
reusable, scalable and flexible whilst the parallelism, robustness
and modularity requirements are maintained.

Multi-agent systems are composed of multiple agents dis-
tributed over several agencies (or hosts) on a network. They are so-
cial, that is to say, they need to interact with each other to reach an
overall objective of the system. These systems form peer-to-peer
architectures and communicate bymeans ofmessages. Suitable for
the development of complex distributed systems, they are hetero-
geneous where the agents require a low coupling level, and useful
in contexts where designing a solution of the problem by a single
agent is complex. MAS present a ‘‘divide and conquer’’ approach
where the solution of a complex problem can be found through
the solving of simpler problems.

2.2. Applications for multi-agent robotic systems

Some areas and examples in robotics whereMARS are currently
applied and thatwould benefit from thesemulti-agent features are
described below:
Heterogeneous mobile robot teams.

A team of mobile robots with various capacities cooperate
together to solve a problem. The members of the team exchange
information and evaluate the decisions to be made. Various pieces
of research have been carried out in this respect, for example on a
team of aerial anti-incendiary robots where each robot possesses
distinct complementary sensory and locomotory capacities. The
robots cooperate on order to detect forest fires. When one robot
localizes a fire, it warns the rest of the robots and decides through
cooperative perception whether it really is a fire or just a false
alarm [1,2].
Robots working in ambient intelligence environments.

Mobile robots communicate with each other using elements
of environmental intelligence in order to obtain information of
a more detailed nature about their surroundings and to be able
to make decisions based on compared information. For example,
projects exist where robots cooperate with the environment in
order to solve everyday housework problems. Furthermore, in the
assistance for the disabled, assistive or shared control wheelchairs
can cooperatewith an intelligent building and decide the optimum
route to arrive at some place of interest [47–49,10,50].
Modular robots.

Completely independent robots can be physically united to
create a new, larger robot. The new combined robot possesses
other kinematic characteristics, a greater number of DOFs (Degree
Of Freedom) or special qualities. The new structure enables it
to confront problems of a more complex nature such as the
overcoming of obstacles, swimming, rolling, crawling, or even the
manipulation of objects [51,52].
Collective robot swarms.

A great number of homogeneous robots cooperate so that they
can consequently achieve common objectives of a more complex
nature. No identification of the robots is necessary since they
possess no special characteristics. The robots cooperate with other
robots close by and their acts are primarily based on the local
information available and on that of the individuals surrounding
them. They are scalable and redundant systems; one single robot
is dispensable and completely interchangeable. These systems
can be capable of solving problems related with exploration,
vigilance, path planning, creation of ad hoc wide-coveragewireless
networks, etc. [53,54,2,55].
Mobile sensor robotics networks

A set of mobile robots with sensors permits the creation of a
network of sensors of a flexible structure. Hence they enable the
location of the sensors to augment the coverage of the sensors or
of another characteristic in order to focus attention on an area, or
to support another individual which presents defective behavior
[56–58].
Multi-agent control systems

Multiple agents on a network collaborate to control a robot [59].
Interesting example are Articulated and Humanoid Robots. These
are composed of a high number of hardware and software
components and require very modular architecture. They possess
multiple processing and the software can be organized through
agents that control distinct parts of the system and cooperate in
order to achieve the overall objectives, but these agents conserve
their autonomy, proactivity and sociability. It is crucial that the
failure or substitution of one of these components causes no
complete system failure. For example, a component of a humanoid
robot, where an agent controls an arm, communicates by means
of messages with a central brain which makes strategic decisions,
however this component can react autonomously in certain
situations in order to prevent damage as if it were a reflexive
reaction. Another example is an agent that controls an arm and
another that controls a leg cooperate tomaintain complete balance
of the robot by using external information in their control loop
when it is available [4,60–62].

2.3. Robotics software architecture for MARS

From the point of view of classic layered robotics software
architectures (see Fig. 2), MARS are typically located on the
top application layer. In layered software architectures each tier
exposes an API to the above layer. Components located within
the same layer interact with each other horizontally (they usually
share the same process).

In terms ofMARS, the intelligence, proactivity and social aspects
would be located within the top application layer. This means that
agents are processes that use the services of lower layers (which
handle all the hardware robotic devices and provide functionality
for robotics algorithms). Many existing robotic technologies
promote this layered architecture for the functional and hardware
abstraction layers, thereby providing a set of components (also
known as Component-Based Robotic Engineering [7–9]) for each
layer. A representative set of technologies is specified in Sections 3
and 4. Moreover, some of these technologies provide a distributed
mechanism to further decouple the hardware abstraction layer
from the functional layer. Layers communicate to each other
through RPC Mechanisms in a Client/Server Architecture, thereby
making the system more flexible and modular.

For a proper MARS development, the application layer must
have a powerful communication infrastructure that enables agent
capacities to be developed. Three alternatives are possible for this
application layer:
• Custom communication software built on top of platform

communication mechanisms, such as sockets, libraries, field
buses, and drivers.

• The use of a general-purpose communicationmiddleware, such
as CORBA, and Web services.

• The use of a multi-agent system framework (MASF), such as
JADE, Mobile-C, COUGAR.

Most existing cases of MARS applications use one of the first two
approaches, both of which end in a continuous ‘‘reinvention of the
wheel’’ of the communication software for each project. Moreover,
a custom implementation of a P2P architecture could be arduous
and usually ends up as a centralized Client/Server Architecture
model. The third option is shown to be the most adequate for the



806 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
Fig. 2. Examples of robotics software organization according to their task abstraction level and their degree of intelligence.
development of MARS applications in a layered architecture, as
some experiments have revealed [63].

Nevertheless, although applications are the most evident
context for MARS, tendencies show that even the Functionality
Layer and the Hardware Abstraction Layer can benefit from a MAS
approach. One example is that of the aforementioned multi-agent
control systems; further examples are mentioned in Section 4.2.
These examples show that even functionality and hardware
abstraction components can be considered as agent nodes. Further
discussions on the differences between these two architectures
are tackled under the heading ‘‘Distributed Architecture’’ of
Section 4.2, and under ‘‘Robot Hardware Interfaces’’ of Section 4.3.

Therefore, a robotics software component can be considered as
an agent according to the degree of intelligence or complexity, but
not according to the abstraction level of the performed task. Hence
components of the Functional and the Robot Hardware Abstraction
layer may be instantiated as agents. These agents also have the
capacities of autonomy, sociality, proactivity and intelligence.
Furthermore, they need a powerful software infrastructure that
promotes the aspects of distributed communication and remote
inspection.

Layered software architectures are consequently considered
as being too inflexible to develop MARS properly, since a
layered architecture would need a replication of the distributed
communication mechanism for each layer and would limit the
interaction between layers. Conversely in MARS architectures,
each node agent is itself an application, and is independent of the
abstraction level of the task. A new Distributed Architecture is
therefore needed, which reflects the Service Oriented Architecture
(SOA) paradigm in the software engineering context. Certain
existing technologies promote this paradigmwhile others promote
a layered architecture. The technologies feasible for MARS
development are analyzed in this work (see Sections 4 and 5).

Finally, from the MAS point of view, a proper classification of
Software components should be based on the degree of intelli-
gence, or complexity granularity. A robotics software architecture
is composed of components of varying granularity; these compo-
nents can be considered as agents under certain circumstances:

The fine-grained components tend to have a well-defined task
and behavior and hence are very cohesive. They are usually
modeled by means of mathematic tools such as: functions,
rules, and truth tables. These components seldom fall within the
definition of an agent. An example could be an algorithm located
in a microcontroller that controls the servomotor of a robotic arm,
or a component that carries out a specific process on an image from
a camera.

Medium-grained components are composed of various sub-
components and can present a more complex behavior, which, on
occasions, cannot be modeled. This component of medium granu-
larity can fit the definition of an agent when it implements some
degree of autonomy, sociability and intelligence. For instance, a
smart agent node that acts as an arm-manipulator controller may
interact and communicate with other nodes in an intelligent way.
To ensure system robustness, the node asks for external informa-
tion in order to make a decision, and notifies the consequences to
other agent nodes in the case of failure, and sends reports, and so
forth. Another example is a humanoid equipped with a set of sen-
sors in the form of cameras and haptic sensors, and a manipulator
to grab objects. The sensors could collaborate in the identification
of a material, and, at the same time, interact with a hand actuator
to quickly drop the object as a reflex movement if damage is being
produced (due to temperature, chemical erosion, and so on). In this
case, this robot is formed of multiple agents of medium granular-
ity that cooperate, thereby creating a small MARS and defining to-
gether the behavior of the main agent which represents the whole
humanoid robot.

Coarse-grained components in a complex robotic system tend
to fit the definition of an agent. A clear example is an autonomous
mobile robot which collaborates with other robots in a team to
explore a building. Another example is a set of distributed cameras
on robots or in the environment that collaborate to identify and
locate people on a map.

3. Robotics software frameworks

3.1. State of technology

In the year 2009, and only in SourceForge, there existed
more than 500 free software projects related with robotics [64].
Examples of these projects implement: drivers for robotics
devices and sensors; communication middleware; simulators and
modeling tools of dynamic systems. A fewof these projects attempt
to provide an integral solution through a set of generic tools and
off-the-shelf libraries with algorithms and controllers useful for
the creation of general-purpose robotic systems.

There are RSFs that are sufficiently suitable for the implementa-
tion of MARS. This is because, in spite of some deficiencies with re-
spect to general-purpose MASFs, they offer the infrastructure and
tools necessary for the creation and deployment of P2P distributed
architectures,where they execute components that fulfill the agent
definition (autonomy, sociability, and proactivity).

The RSF develop aspects such as scalability, reusability,
deployment, and debugging simplicity of hardware and software
components. They also provide modeling and simulation tools
to facilitate the tasks of design, verification, and testing. In this
way, a suitable environment is achieved for the creation of larger,
more complex, and more integrated robotics architecture. Due
to the great diversity in the characteristics that the current
RSFs offer, their comparison is not always straightforward. No
outstanding solution for all the aspects exists, nor is there a
consensus on the organization and structure of this type of
technology, nor on what aspects must be covered. Some of the
best-known OpenSource RSFs include: Player [65], OROCOS [66],
ROS [67], YARP [68], OpenRave [69], OpenRTM [70], OpenRDK [71],
MOOS [72], MIRO [73], JDE+ [74], ORCA [75], MARIE [76], and



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 807
CARMEN [77], OPRoS [78], CLARATY [79], MARIE [80], Mobile
Robots [81], MRPT [82], MSRS [83], Peis-Ecology [84], Pyro [85],
Webots [86]. Moreover, while some non-open-source robot
software platforms have appeared, such as Microsoft Robotics
Studio, the focus of this study is to be on open source systems.
This is because two reasons: first, the diversity of non-commercial
platforms is very wide, which permits to compare and discuss lots
of implementations, analyzing their drawbacks and advantages.
Secondly, internal architecture of non-open-source platforms is
(due to commercial reasons) less documented.

3.2. Aspects focused on by existing RSFs

Despite the varied foci, many common points are shared; in
general they are all geared toward contributing solutions for
typical problems in robotics. These RSFs are normally centered on
one or several of the following areas:

• Middleware for distributed robotics. Some RFSs provide a set
of tools that enable the architecture of the robotic system
to be organized by taking advantage of characteristics that
are intrinsically parallel to the robotic system. At runtime,
the architecture is organized into nodes which communicate
with each other by means of passing messages. This design
of robotic systems may be more complicated than monolithic
approximations, but the architecture yielded is a lot more
flexible thanks to the high degree of uncoupling of the nodes.
All the presented applications in Section 2.2 are highly sensitive
to the use of properly distributed middleware during the
software design and development stages. The use of this kind
of middleware is extremely recommended, almost mandatory
(as mentioned in Section 2.3). The middleware for distributed
robotics tools promotes scalability, reusability, and the high
tolerance of errors, and also renders parallel development
and integration tasks easier. Examples include: ROS, YARP,
OpenRDK, OpenRTM.

• Introspection and management tools. The introspection and
management tools permit the monitoring, visualization and
analysis of the state of the robotic system to be carried out
during execution which enables the tasks of tracking, and
of error detection and correction. Tools worth mentioning
here include those of logging, management, and system-state
monitoring from the graphic interface, the console, or the
web. They are especially important in distributed robotics
architectures, given the difficulty of debugging and testing of
such architectures.

• Advanced development tools. These enable time and expense to
be saved in the implementation and testing stages; an especially
important aspect in a complex robotic system. Development
tools include compilers, dependency managers with other
modules or system libraries, and Integrated Development
Environments (IDEs). Deployment tools permit scripts and
configuration files to be designed which define the start-up
of the robotic system. The initial values of the parameters,
the nodes used, its localization, name, and connections, among
other details, are specified in these files.

• Robot hardware interfaces and drivers. These encapsulate the
code of the controller of a specific device (sensor or actuator)
behind a well-known and stable programming interface.
This interface has to be defined between robot devices and
user modules. The objective is to attain reusability of the
devices and of the high-level algorithms that they use. It is
common for a specific device to offer various functions and
particular configuration parameters. When this occurs, the
device controller can implement various interfaces according
to its characteristics. For example, if a commercial robotic arm
offers a system of integrated vision in the end-effector, then the
controller can implement the generic interface of the robotic
arm and of the vision. The specific parameters of the device
are stated in a configuration file, and thereby the algorithms
remain free from coupling with specific devices, and reusability
is maintained. In this way, the Open-Close principle of Software
Engineering is observed: code is open to extension and closed
to modification. The frameworks specialized in this area offer
programmers a simple development mechanism for their own
drivers. Furthermore, they commonly provide a set of built-
in controllers for diverse commercial devices. Player, MOOS,
ORCA, and CARMEN are examples of Frameworks that are
centered in this area. This aspect will be taken into account in
the RSFs surveyed in Sections 4 and 5.

• Robotics algorithms. These are often the objective of an RSF:
to provide generic and reusable algorithms and functionalities
in the field of robotics. They correspond to the functionality
and application levels shown in Fig. 2. Those algorithms are
encountered at different levels of abstraction: from a low
level, such as those related to kinematics, control, robot
perception, Bayesian estimation up to others of a high level
such as planning, human interaction, robot learning, navigation
algorithms, motion planning, Bayesian Filtering, and SLAM.
These abstract algorithms are usually built over the Robotic
Hardware Interfaces or other low-level robotics algorithms.
This software is usually provided in the form of libraries or
components that can be instantiated as nodes of the system.
Some RSFs, such as Player, do not show a clear line between
these algorithms and device drivers since both are usually
wrapped behind a stable and known programming interface to
promote reutilization.

• Simulation and modeling. These permit modeling, prototyping,
and simulation of the final system to be generated, thereby sav-
ing both time and expense. They also serve as an early test of
viability of the solutions, which may prevent situations of mal-
function, conflict, etc. These tools stand out for their capacity to
express mathematical concepts and for the possibility of carry-
ing out simulations on these models, thereby obtaining results
which can be interpreted for an improvement in the system
design. These tools usually offer the possibility of generating
graphs and also permit simulations of the robotic system in vir-
tual worlds with rigid solid dynamics. Some free tools which
deserve a mention include: OpenRave, Stage, UsarSIM, Gazebo,
and Breve.

3.3. Existing RSFs overview

The earlier technologies tackled a design of a Robotics
Framework following an abstraction-level-based architecture (see
Fig. 2). However a proper MARS software architecture should
have a strong infrastructure focused on distributed systems
where nodes communicate with each other independently of
the abstraction level of the task that they perform. To this end,
in this survey only those frameworks that fulfill the conditions
stated under the heading ‘‘Middleware for distributed robotics’’ of
Section 3.2 are to be analyzed.

Table 1 shows a set of existing RSFs and their strong
characteristics. Those RSFs selected for a more in-depth analysis
are shown in bold font. Some of the discarded frameworks may
be excellent, popular and active RSFs. However, they fail to
represent the best choice for a complex MARS since they provide
an insufficiently powerful distributed middleware mechanism.
Other aspects significant in the criteria for MARS, such as
introspection tools and development tools, are also taken into
consideration. In addition, other selection criteria considered in
this study include: characterization with an Open-Source and
free-commercial license, proper documentation for evaluation, a



808 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
Table 1
Characteristics of existing RSFs.

RSF name Open source and
commercial Free
software

Advanced
distributed
Architecture

Introspection and
management tools

Hardware
interfaces
and drivers

Robotics
algorithms

Simulation Advanced
development
tools

Control and
real-time
oriented

CARMEN Yes Yes No Yes Yes Yes No No
CLARATY No Yes Yes Yes Yes No Yes No
JDE+ Yes No No Yes Yes Yes No No
MARIE Yes Yes No Yes Yes Yes No No
MIRO Yes Yes No Yes No No No No
Mobile
robots

No No No Yes Yes Yes No No

MOOS Yes No No Yes No No No No
MRPT Yes No Yes Yes Yes No No No
MSRS No Yes No Yes No Yes Yes No
OpenRave Yes No No No Yes Yes No No
OpenRDK Yes Yes Yes Yes No No No No
OpenRTM Yes Yes Yes Yes Yes No Yes No
OpROS No Yes Yes Yes Yes Yes Yes No
ORCA Yes Yes No Yes No No No No
OROCOS Yes Yes bf No Yes Yes No No Yes
PEIS-ecology Yes Yes Yes Yes No Yes No No
Player/stage Yes No No Yes Yes Yes No No
Pyro No No No Yes Yes Yes No No
ROS Yes Yes Yes Yes Yes Yes Yes No
Webots No No No Yes No Yes Yes No
YARP Yes Yes Yes Yes No Yes No No
minimal level of maturity, and recent project updating (within the
last 12 months, that is, since January 2011). Hence, frameworks,
such as OpROS, CLARATY, Peis-Ecology, and Microsoft Robotics
Studio, have been discarded here (although they may be adequate
for the development of MARS).

4. Main aspects for multi-agent robotic systems software
development

In this section, a general analysis will be made of the
different frameworks (RSFs and MASFs) proposed for the MARS
development. Given that the present study is developed in the
MARS sphere, special emphasis will be given to the characteristics
related to the P2P distributed architecture of the robotic system
(since this is the basic infrastructure for MARS development).
These architectures are organized by means of nodes (modules),
where a groupof the nodes of the system fulfill the agent definition.
Certain other important general aspects for the development of
robotic systems are also briefly analyzed.

There are 23 characteristics compared in the three sections:
‘‘General Aspects’’, ‘‘Aspects of Distributed Systems’’, and ‘‘Other
Aspects of Robotics Frameworks’’.

4.1. General development aspects

In the first section of characteristics, general information of the
software is shown on the state of the projects of the Frameworks.
Founder organization

All the frameworks studied arose in organizations; typically
companies or universities. Although this work only contemplates
Open-Source projects and the community that contributes to
their development, it is usually the promoting organization that
makes the main contributions and indicates the guidelines for
the development of the project. This allows the project to
evolve in a coherent manner. The implemented techniques and
characteristics are usually supported by detailed and formal
scientific publications.
Year

The year of creation is a measure of the maturity of the project.
Many of the Open-Source RSFs that can be found are left inactive
after a couple of years of development. This fact can be justifiable
considering the rapidity of the advances in this area. New tech-
nologies include new characteristics, leaving the old RSFs obsolete.
Therefore, it is another important factor to consider as it represents
maturity, good design and capacity to adapt over time.
License

The license is a crucial factor for the success of development
frameworks. There have been multitudes of proprietors of
unsuccessful frameworks in the sphere of robotics and MAS.
The license is also significant in the scope of the investigation
since Open-Source projects allow an understanding of how the
framework functions, and facilitate the creation of amore powerful
community, which together form a source of new ideas.
Latest release

This is an indicator of project activity and maturity as well
as of current activity and trends. In this comparative study, only
those active frameworks that have been updated in the last twelve
months have been considered (this study has beenmade in January
2012).
Supported operating systems

The operating systems offer a hardware abstraction layer (HAL)
that simplifies the development of applications enormously and
encourages the reuse of hardware and software. Classically, the
software architectures in robotic systems have undergone ad hoc
development and the use of an operating system has not always
been necessary. Lightweight operating systems have usually been
employed (RTKernel, FreeRTOS, QNX, etc.) that are specifically
adapted to the hardware and to the devices and peripherals
used. Some of the most important characteristics supporting these
operating systems are multi-tasking and Real-Time restrictions;
highly interesting aspects in robotics. They also possess controllers
for a group of specific devices that allow them to access typical
peripherals such as Ethernet and CAN. A disadvantage of these
systems is that they have a smaller range of off-the-shelf libraries
and drivers for devices and peripherals. On the other hand, the
RSFs and MASFs allow very diverse, complex robotic systems to
be developed. In order to maintain reusability they need to rely on
the support of a high level of abstraction in the Operating Systems
and on a large quantity and diversity of off-the-shelf libraries and
drivers for devices and peripherals. The general-purpose operating
systems which are the most highly developed in these aspects are
found in the world of PCs: Linux, Windows and OSX are some



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 809
examples. As a disadvantage, these systems can be considered
as heavyweight since they require greater hardware resources.
Nevertheless, inmany cases, this does not prevent them frombeing
able to support tasks with real-time restrictions (RTLinux, RTAI).
Sometimes a framework is supported on a Virtual Java Machine,
which allows the framework to isolate itself from the operating
system since the majority of operating systems have support for
some of these VMs (VirtualMachines). A disadvantage is the loss of
control of the hardware and the physical platform; a fundamental
aspect in robotics.
Programming language

The programming language used for development is also
an important aspect. The greater the number of supported
languages, the more flexibility is contributed to development,
which in turn results in more libraries and projects that can
be reused. The language employed brings major consequences
on performance, the real-time capabilities (see Section 4.3), the
transport mechanism, and some agent capacities, such as mobility
(see Section 4.2).

The most widely accepted language in robotics application
frameworks is C/C++ since it offers a good balance between
the access to devices, sensors and actuators at low level, while
still offering a sufficient level of abstraction to create complex
distributed MAS architectures. This means that it presents an
adequate language for both low-level control tasks and high-level
programming. On the other hand,many algorithms in robotics deal
with problems with a high level of abstraction which is why it is
also recommended that the system support high-level languages
such as Java, Python or MATLAB.

Nevertheless most platforms tend to offer a wider range of
languages [87], to prevent programming language restrictions to
be an application barrier when deploying MARS.

4.2. Aspects of distributed systems

Those aspects related to the communications used in RSFs are
analyzed in this section of characteristics. This is the main section
where the differences and similarities between the proposed RSF
and the MASFs are shown.
Distributed architecture

The distributed architecture (also known as Distributed Topol-
ogy) for a Multi-Agent System should be Peer to Peer (P2P) from a
strictly theoretical point of view (see Section 2.1). In a purely P2P
system, the nodes interact among themselves without the need for
a coordinating fixed central node or authority. This model displays
a high tolerance to failures since no special node is indispensable.
With this approach, the communication performance can be also
improved since bottlenecks are avoided.

In terms of MARS applications, it is clear that the vast majority
can benefit from a pure P2P Architecture. Let us consider, for
instance, a swarm of robots that explore huge extensions of
terrain, and which are constrained in communications and energy
autonomy. The robots communicate to each other wirelessly and
form a mesh network logic topology.

In this application, a centralized architecture could be catas-
trophic for several reasons: If the central node becomes isolated,
all the robotics architecture crashes.Moreover, if eachmessage has
to pass through the central node, then the latency of communica-
tions increases and the central node may become saturated and
consequently crash. Both cases show the poor robustness of this
architecture.

Nevertheless, a pure P2P architecture has some drawbacks,
such as the increase of internal complexity of the RSF. P2P
also presents certain difficulties when different nodes are put in
contact, and when coordinating these nodes; hence some extra
services are needed, such as a distributed naming service, and a
discovery service.

Finally, hybrid models also exist that attempt to combine
the advantages of these alternatives. A central node server
exists (sometimes called the Object Broker) which undertakes
special tasks, such as putting different nodes in contact: naming
services and lookup services are examples of hybrid models (see
below). Nevertheless, once put in contact, the nodes interact
among themselves independently by means of point-to-point
communication [12].

It should be borne in mind that the many RSFs which use a
pure Client/Server model in a distributed layered architecture (see
Section 2.3), such as PLAYER, MIRO and MOOS, are not sufficiently
flexible, scalable and robust for the development of a MARS. The
frameworks presented and analyzed in this survey are suitable
for the development of MARS since they provide the necessary
infrastructure for the interaction of nodes in a P2P or Hybrid-P2P
architecture.
Node communication mechanisms

The nodes interact among themselves by means of the passing
of messages. Simple message passing is the basis that allows other
types of more advanced mechanisms to be constructed, such as
ports, topics, events, services, and properties. These mechanisms
allow the attempted communication to stand out and they offer
some advantage in the design or implementation: low coupling,
performance, ease of use, etc. A common characteristic of these
mechanisms with respect to simple message passing is that they
are addressable communication channels, for example a service
or port of a node needs a name in order for it to be located
and referenced. In the case of Hybrid P2P systems, all these
communication channels must be registered in themain node that
hosts the naming service and lookup service.
• Simple message. This is the simplest mechanism, and is a one-

to-one communication where a node sends an asynchronous
message and another node receives it. It is the most basic com-
munication mechanism, from which all the other mechanisms
are derived. It is also the most commonly used in the MASFs.
Themessages also tend to includemetadata about themessage,
such as the intention, content format, and content ontology.

• Ports. These are mechanisms that allow nodes to communicate
with a low degree of coupling. The nodes are made up of
two types of ports: in-ports and out-ports. These ports can
be interconnected with another port through one or several
connections (one-to-many). Fig. 3 shows several examples
of interconnections between nodes with ports. They can be
created and destroyed dynamically, which contributes great
flexibility. Each node is designed to read and towrite in its ports
independently of which node is connected in execution. The
messages are usually stored in buffers in the in-ports and out-
ports. Themessages can be read by the receiver in twoways: by
checking the state of the buffers and collecting new messages
(polling) or by asynchronous method invocation (callback).

• Topics. This is an asynchronous communication mechanism
that follows the Publish/Subscribe model and allows a many-
to-many communication to be made whilst maintaining low
coupling. A topic represents a centralized channel where all the
nodes connected to it receive anymessage that is sent by a node.
This channel represents logic centralization; that is to say, it
does not imply a bus at the transport level. This logic bus could
be implemented by various means in the transport layer, for
example, bymeans ofmultiple point-to-point connections in an
Ethernet network and TCP/IP, or, a physical bus type connection
in a CAN network. Figs. 4 and 5 represent an example (usual on
the RSFs) where a topic has two publishers and two subscribers.
In many aspects topics are similar to ports, nevertheless one of
themain differences is that a topic does not pertain to any node,
it is a global system resource, whereas a port pertains to a node.



810 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
Fig. 3. Port mechanism.

Fig. 4. Node interaction through the topic mechanism (logic view).

• Events. These are one-to-many asynchronous communication
mechanisms that allow a low degree of coupling to be main-
tained between nodes. They are also known as the observ-
able/observer patterns. The emitting node emits messages to
all the subscribed nodes, which, although very similar to the
ports mechanism, differs mainly in that: the connection con-
cept does not exist; an event is implicitly asynchronous; and
the subscribed nodes always deal with events by means of call-
backs.

• Services. This is a communication mechanism that allows the
remote execution of a procedure; the remote procedure call
(RPC). Two messages come into play: Request and Response.
The message request is sent by the client node and indicates
what procedure is desired to be executed and its arguments.
The Responsemessage is sent by the server nodewith the result
of the operation. It is a typically synchronous procedure where
the client remains blocked while the response is awaited. This
mechanism is typically used for Robot Hardware Interfaces (see
‘‘Robot Hardware Interfaces’’ in Section 4.3).

• Properties. The nodes can show a set of properties that represent
part of their status to the rest of the nodes. Each property
is usually managed through a pair of services get/set (get
property for the listener, and set property for the node that is
going to show a property). However, several RSFs treat these
two services independently. In Hybrid P2P architectures, the
parameters are often stored in the master node. In such a case,
it is called the ‘‘Parameter Server’’. It is worth mentioning that
the pure P2P approach is more desirable. For instance, ROS
uses a parameter server, while OROCOS and YARP have real
distributed node properties.

Naming service
This is a global service typical in hybrid P2P architectures,

otherwise known as the White Pages service, which allows the
localization of nodes, and other global system resources such
as topics, from a name. Specific node resources, such as ports,
properties, services and events, seldom have a global name
managed by the naming service. This service is present in all of
the frameworks analyzed, but most of the discarded frameworks
of Section 3 fail to provide it.
Fig. 5. Topic mechanism implemented over a P2P network protocol (like TCP).

Generally, the RSFs display naming-service mechanisms (also
known as White Paper Service). Some RSFs have characteristics of
a more advanced nature such as ‘‘Name Pushing’’ and the relative
addressing of agents or resources of the MAS. These mechanisms
are crucial for the prevention of name conflicts when nodes
are instantiated in different spheres of the system. In this case
although they can both have the same code, they are in different
contexts, which is why a relative name references different agents
or resources.

These complementary mechanisms related to the naming
service boost the flexibility of the resources that can be referenced:

• Renaming (Remapping). During deployment, this mechanism
allows all the references that exist in the logic of a node
of the system resources (nodes, topics, services, etc.) to be
substituted by others. It is highly useful in obtaining the
correct integration of modules. For example, if two modules
implemented by different development teamswere designed to
read and write in a topic, and each team chose a different name
for the topic, neither node would manage to communicate. The
problem becomes more complicated when more modules are
involved. There are two solutions to this problem: change the
implementation and change the name of the affected topics;
or use the renaming mechanism, which allows the final value
of the deployment configuration to be kept in a file which will
take the references to the system resources. This last solution is
called Renaming when it is a built-in feature of the RSF.

• Relative and absolute naming (Namespaces). This is the capacity
to represent hierarchies in the names. It allows the code of a
node to be referenced by other resources in an absolutemanner
(namespace + name) or a relative manner (name). It is an
important tool for creating an organized design and clean code.
It is mainly useful when it is used in conjunction with Name
Pushing.

• Name pushing. This is a particular form of renaming. It is a
mechanism that allows a group of resources (nodes, topics, etc.)
to be instantiated in a specific namespace at the moment of
deployment. This mechanism allows conflicts in the resource
names to be prevented. When name pushing is carried out,
the interconnections of the nodes can change, since all the
references to resources with relative names will only be sought
in the present namespace, whereas the absolute references to
resources will remain unaffected by name pushing and will
continue to be referenced to the same resources. Fig. 6 shows
how two groups of resources (Actuator-Agent, Intelligent-
Agent and control topic) are instantiated twice and located in
two different namespaces. It can also be seen how the absolute
references to the monitor topic and Monitor-Agent resources
stay in both groups in spite of name pushing.

Lookup service.
This service is peculiar to Hybrid P2P architectures where a

central or master node exists which contains special information
about the whole system. It is also known as the Yellow Pages
service, where the central agent or node acts as a directory of the
existing resources. The system agents can consult this directory
and look for other agents that offer certain services or that fulfill



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 811
Fig. 6. Absolute and relative names for nodes and topics.
certain properties. It is worth mentioning that the lookup service
for multi-agent systems is well defined in the FIPA standard [13].

Not all the RSFs implement the lookup service. This is a
fundamental characteristic for the creation of a robust MAS. For
example, where certain nodes cease to function or cease to offer
a particular service or functionality, the system must be able to
replace these nodes by searching for substitutes that offer similar
services or functionality.

There are innumerable situations where this service is essen-
tial: heterogeneous robots in teams or swarms can obviously ben-
efit from this service (see the discovery service example below).
Another example is a complex autonomous robot controlled by
a multi-agent control system in an internal network. Each node
works on a specific task: some nodes (agents) in a dedicated CPU
work to handle the obstacle avoidance and localization tasks, while
other nodes are dedicated to handling sensors and actuators.

The localization and obstacle avoidance agents need a predic-
tion of the future state based on the odometry system. If odometry
sensors fail due to the dirtiness of the terrain or to robot damage,
then both agents ask the lookup servicewhether another agent can
provide the odometry service. For instance some cameras can start
working as a visual odometry system although they have other pri-
mary tasks. Although camera agents then become overloaded, the
system can continue working until its objectives are achieved or a
repair is made.

All these situations can be solved without a lookup service if
every agent node has previous knowledge of all the capacities of
the remaining agents. In short, this lookup service is shown to be
essential in a dynamic situation where the services available are
subject to the runtime context: energy, priority of running tasks of
each agent, physical damages in sensors, etc.
Discovery service

This is a service that is intrinsically associated with pure P2P
distributed architectureswhich enables a node that offers a certain
service to be found. In pure P2P architectures, a central nodewhere
the services are registered (Yellow Pages) does not exist, which
is why this information must be distributed across the existing
nodes. In other words, the discovery service is the pure distributed
version of the lookup service: it finds agents that match a specific
set of characteristics. As each node can be aware of the existence of
different services offered by other nodes, a service search protocol
is necessary. This protocol is called the discovery service.

It could be useful in Collective Robot Swarms, in certain Robots
working in Ambient Intelligence Environments, or in a team of
heterogeneous robots. All these applications are subject to network
connectivity problems. On a hybrid P2P architecture, losing the
master node could be critical for the system. Hence, a discovery
servicemakes theMARSmore robust. Let us consider a teamof fire-
fighters as a team of heterogeneous robots [1] that is composed of
memberswith different capacities: fire hose, first-aid, tracking, etc.
When a fire is detected in a forest, the tracking robots could explore
to find people in danger or injured. In this case, one tracking robot
should look for the nearest and unoccupied first-aid robot and
waterspout robot in order to heal and protect such people. All this
negotiation and interaction between robots starts with the use of
the discovery service asking for the first-aid and fire hose agent
robots.

The discovery service is a very dynamic solution when new
robots must be dynamically incorporated into a team, when
connectivity problems can occur, or when the availability of robots
is not ensured, due to robot damage, energy autonomy, etc.
Agent mobility

This characteristic defines the capacity by which a software
agent can move between network nodes, for example, sensors
and robots. Some definitions such as the MASIF standard [88]
consider an inherent characteristic of the agents, whilst other
references [17] distinguish between stationary-agent and mobile-
agent. Nevertheless, it is usually implemented in the general-
purpose MASFs. On the other hand, this feature has not been
implemented by anyRSF since robotics architectures are nowadays
much more static than other multi-agent systems architectures.
Moreover, many of robotics software agents are usually coupled
with the hardware and this causes a much higher platform
dependency (which is a big problem for an Agent Mobility
implementation). In any case, this feature would be desirable in
future RSFs especially for higher-level agents of a complex robotic
system.

This characteristic could be highly useful in certain Robotic
systems, for example, high-level nodes which processes certain
algorithms with little dependency on the hardware. In these cases,
the agent could travel to idle processing units, whereas the busiest
units could concentrate on a specific task of great computational
cost. It can also be highlighted that one of the reasons why RSFs do
not have mobile agents, is because they are subject to platforms
and languages that need to be recompiled when they change
platform, such as C++. Nevertheless, there are original alternatives,
such asMobile-C, that use C++ interpretationmechanisms, thereby
maintaining access at a low level. Furthermore, to implement
this mobility it is possible to take advantage of the high-level
interpreted languages, such as Python or Java, which are supported
by some RSFs.

An example of application that can benefit from this feature
can be found in robots interacting with intelligent environments
where high-resolution image-processing tasks are required. High-
resolution images bring higher communication latencies between



812 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
nodes and high computational resources and are therefore tasks
of high energy consumption. Let us consider a ‘‘navigator agent’’
originally located in amobile robot, which requires the recognition
of an unfamiliar face. This navigator agent could travel temporarily
to the environment computers to perform such a task there, in
order to access a more complete face database stored in the
building.

Therefore, if an image-processing task is computationally
expensive, an agent could use the powerful computational
infrastructure of the intelligent building to save both time and
energy consumption.
Multi-agent or robotics standard

Standards are crucial for the development of robotics. There are
very few standards related with robotics architectures and multi-
agent systems, some of which are FIPA [12], OMG-MASIF [88]
and OMG-RTC [89]. FIPA and OMG-MASIF are standards that de-
fine interaction agent patterns, their communication language, and
the necessary infrastructure for the system. The use of standards
promotes interoperability between various technologies, which is
positive in areas of technology with a great diversity of imple-
mentations. Over the last decade, several general-purpose MASFs
have implemented these standards, thereby enabling their com-
patibility to each other. In this way, their interoperability is im-
proved, and therefore their acceptance and diffusion can increase
considerably. On the other hand, the RSFs studied here fail to im-
plement inter-agent communication standards, such as FIPA and
MASIF. The RSFs are more oriented toward communications mid-
dleware. However, P2P-architecture-developed RSFs are becoming
more extensive and the lack of standards of interaction between
nodes may well be a problem in the near future. Hence, certain
guidelines for future RSFs could include the implementation of
MAS standard, such as FIPA.

OMG-RTC is a standard for robotics architectures which
defines the concept a Robotic Technology Component (RTC)
which is a logical representation of a hardware and/or software
entity that provides well-known functionality and services. Again
this standard potentially promotes the interoperability between
various robotics technologies.
Introspection and distributed management tools

Monitoring, introspection, debugging and administration are
fundamental problems in a distributed system. Some tools that can
make life easier for the development team include:

• Distributed Log System: allows the creation of an event log.
• Monitoring of the agents or node state in execution. These tools

can be console or graphic applications. For example, ROS allows
the graphical monitoring of some standard messages, which
contains robot pose, robot vision, and robot trajectory through
the rviz 3D tool.

• Monitoring of the communication channels, or incoming and
outgoing messages of an agent, port or topic.

• Administration of the nodes in execution: eliminate, start,
clone, migrate (if they are agents), etc.

The studied RSFs andMASFs provide a great number of debugging,
monitoring andmanagement tools, and are found in a similar state
of maturity.
Transport mechanisms

The node communication mechanisms described above are
based on messages. These messages are first serialized, and then
sent through a real physical network. These transport mechanisms
are also known in certain RSFs (such as YARP and OPRoS) as
Carriers or Connectors. The capacity of an RSF to choose between
various mechanisms is essential to maintain the scalability, the
communication performance, and even the real-time guarantees.
Thismeans thatMARS applicationswith heavy communications or
real-time constraints must seriously take this aspect into account.
This is the case of Multi-Agent control systems and MARS where
numerous image and point cloud messages are sent over the
network.

Each node communication mechanismmay be implemented in
a different way. For instance the topic communication mechanism
may be more properly implemented with a physical bus network
and using amulticast protocol. However there are many situations
in which this straightforward solution is not possible. Hence, the
more transport mechanisms a RSF supports, the better the service
is. For instance, Fig. 5 shows a typical situation where the topic
communication mechanism is implemented over a point to point
protocol like TCP.

It is worth mentioning that robotic systems are often designed
over an Ethernet. Field Buses, such as CANBus, I2C, EtherCAT,
Serial lines, FireWire, PROFIBUS, and even PCI are often used.
Unfortunately, most RSFs and MASFs use only the IP protocol,
which means that certain capabilities, such as real-time are
missed. Therefore, most of these mechanisms are based on
TCP/IP or UDP/IP. However, other alternatives exist. Each method
of transport presents its own advantages and disadvantages.
The most notable include: TCP protocol displays a trustworthy
connection between two nodes; and UDP is useful when faster
connections are required where the loss of packets is not critical.

Some frameworks also make use of network-multicast or
shared memory mechanisms for processes and threads in the
same machine. These transport mechanisms can greatly boost the
communications performance.Moreover, many RSFs use transport
mechanisms built on top of other general purpose communication
middleware or libraries. Examples include CORBA, Java RMI, ACE,
and ICE. When general-purpose communication middleware is
used as a transport mechanism, all its features can be inherited by
the RSF. Some of these features are very interesting: configurable
sub-transport (TCP, UDP), security SSL, authentication, quality of
service QoS. Other features can be inherited; for instance, the
use of CORBA makes a naming service in a Remote RPC API
isolationmechanism available (see ‘‘Robot Hardware Interfaces’’ in
Section 4.3).

In general, RSFs and MASFs should improve the transport
layer in order to support a wider set of choices. A well-designed
MASF or RSF should maintain these aspects from the logic-level
communication between two agents through the use of isolation
mechanisms, such as configuration files.

Perhaps the best RSF in this aspect is YARP. It provides
an acceptable set of implemented carriers and also provides
a mechanism to implement custom carriers. This enables the
application of YARPwithmost field buses. OROCOS is also special in
this aspect since it provides support for the Ethercat and CanOPEN
transport mechanisms. ROS also provides basic support for serial
wire communications.
Message format and type marshaling

The message format constitutes a secondary aspect but is
worth evaluating since it brings certain consequences. A suitable
message format can promote interoperability between different
platforms and languages. For example, the text-type message
formats that are easily interpretable by parsers are very useful,
especially XML, XDR, CSV, JSON, and YAML. Another advantage of
the text-type format is that the content of the messages can be
comprehensibly analyzed even by tools executed from a command
console. Extended binary formats such YAML [90] are also
recommended since they outperform text formats with regards
to communication, memory, and computational requirements.
Binary formats are less frequently used in MASFs than in RSFs.

Performance, energy consumption, and introspection facilities
are affected according to the message format selected. Therefore,
this aspect should be also considered in those applications



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 813
whose constraints are related with communication performance
or energetic autonomy. Applications based onmobile robotswhich
work autonomously should especially consider this aspect: mobile
sensor networks, swarm robots, and modular robots usually have
significant energy autonomy constraints. The use of a binary
data format facilitates better performance and energy saving.
Furthermore, binary formats focused on performance are custom
made and have no standardization. Therefore, introspection tools
have to be specifically designed to handle this kind of format.
On the other hand, text-based formats are more adequate for
platform-independent introspection tools.
Concurrency model

This characteristic indicates if the framework organizes the
agents by means of processes or threads. Processes are more flex-
ible and can be distributed between different physical nodes of
a network, whereas threads pertain to the same process and are
sometimes useful for agents with closely related tasks where the
velocity of communication is critical. There are frameworks in
robotics that support mixed models. Frameworks that allow the
modules to be organized as multi-thread usually internally imple-
ment the necessary memory protection and concurrency mecha-
nisms so that the programmer uses this system transparently or
semi-transparently.

4.3. Other aspects of robotics frameworks

The general characteristics of the RSFs are briefly described
in Section 2 of the present study. In addition to the middleware
characteristics of the communications, the RSFs present other
aspects significant for Robotic systems development, some of
which are analyzed in this section.
Development tools

Some frameworks provide a set of tools that facilitate robotics
software development. Commands for the construction of the
system tend to be of a regular type, and can solve problems
of dependences on other modules of the framework. On the
other hand, some frameworks allow the graphical creation and
interconnection of system modules.
Deployment tools

Frameworks usually offer infrastructure to facilitate deploy-
ment tasks. This infrastructure typically appears in the form of
tools and configuration files. Deployment tools are crucial inmain-
taining the scalability of the distributed and complex robotics
architectures. The architecture of the system is defined and the
participating nodes are specified in the configuration files. The con-
figuration files can also define boot and connection parameters and
mechanisms of communication between the nodes. The tools can
be visual or command-lines and allow the start, stop and adminis-
tration of system nodes, as well as the establishment of the initial
parameters through configuration files, or the conducting of op-
erations related to the naming service, such as renaming or name
pushing.
Simulation capabilities

The simulators offer a visual representation of the problem
and execution in virtual worlds of rigid solids. The frameworks
studied are not focused on simulation capacities; nevertheless
some frameworks have implemented modules that allow a rapid
integration with simulators such as Stage, Gazebo, OpenRave,
UsarSIM or Webots. Simulators play a major role by allowing the
system to be modeled in the design stage, by finding errors in the
early stages of development, and by saving time and money. They
are also useful for testing ideas.
Robot hardware interfaces

RSFs usually support a set of hardware devices and robots.
This is one of the lower-level aspects of the Robotics software
Development (see Section 3.2). Most existing RSFs mentioned in
Table 1 tackle this aspect, and commonly use one of the two
following approaches for the implementation of the interface:
• The API isolation approach: This approach follows the layered

architecture discussed in Section 2.3. An application program-
ming interface (API) is designed in a language, such as C++, and
Java. The specific code then implements such interface, usu-
ally through inheritance. Programmers are encouraged tomake
high-level algorithms over these interfaces instead of specific
hardware code. The functionality is normally isolated in one of
two ways:
– Dynamic Link Library Isolation: The driver code is isolated

in a dynamic library and loaded by the node at runtime.
This is the simplest way of abstraction. It is adequate for
rapid software development and higher driver performance.
However problems arise when multi-language support or
introspection compatibility is required. Clear examples of
RSFs with this approach are MRPT [82] and Pyro [85].

– RPC-API Server Isolation: The driver code is isolated in a
server that is invoked by a RPC. The API internally calls
a remote server which executes the requested function by
means of a Client/Server Architecture between layers (see
Section 2.3). This mechanism is transparent for the client
(upper layer) since the code is coupled over a programming
interface. This approach is more flexible, and enables the use
of distributed processing, various programming languages in
each layer, etc. Themain drawback of this approach is that the
latency of operations may increase and real-time capabilities
may be lost, if the correct transport layer and operative
system is not used. The most representative example of this
approach is the Player/Stage RSF. This approach is typical
in RSFs which use CORBA as a transport layer, given that
CORBA provides itself with a distributed OOP mechanism.
The multiple-language support is achieved through code
generation from any Interface Definition Language, such as
CORBA-IDL. Examples of RSFs using this approach are MIRO
and MOOS.

• The node isolation approach: This approach is peculiar to P2P
architectures (see Section 2.3). The device driver code is isolated
in a component that can be instantiated as a node at runtime.
This node uses the communication mechanisms explained
in Section 4.2 (ports, topics, services, etc). The programmer
incorporates these mechanisms explicitly in the node code,
and hence the coupling point is located in the message
data structure. Programmers are therefore encouraged to use
standardized message types for reusability purposes. Messages
types include: motor commands, images, clouds of points, and
IMU sensor readings. Again the message data type may be
problematic in multi-language RSFs. As in the RPC-API isolation
approach, the main drawback of this approach is that the use
of distributed communication mechanisms may increase the
latency of operations and therefore real-time capabilities may
be lost.

The difference between the node isolation approach (using a
service communicationmechanism) and the RPC-API approach are
sometimes unclear, but the key differences between them are:
• The RPC-API approach imposes a strict client–server layered

architecture for Robot hardware interfaces. In this architecture,
the server cannot take the initiative since it only provides a set
of services to the upper layer. In the node isolation approach,
communication is balanced and both nodes can synchronously
communicate to each other.

• The programming style in the node isolation approach with
services is much more explicit and the coupling point is in the
message data structure while the coupling point in RPC-API is
the provided list of methods. Programming code can be more
comfortable over RPC-API than over the service communication
mechanism.



814 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
Robotics algorithms
Many RSFs offer reusable generic algorithms (see Section 3.2)

in the sphere of robotics: kinematics, robot perception, Bayesian
estimation, SLAM,motion planning andmachine learning, to name
but a few. These algorithms present one of the most important
aspects for evaluation, since to some extent it measures the good
design of an RSF and means that it has successfully overcome
the chronic obstacles to the reuse and generalization of robotics
technologies.
Real-time capabilities

One of the most important features in an RSF is Real-Time
constraint support. In order for the whole system to be considered
as having real-time capacities, all the hardware and software
components used (operating system, communication protocol, and
libraries) must fulfill these restrictions, which is why it is a very
complex objective in a distributed robotic system. Support forHard
Real-Time constraints is unusual in the RSFs; nevertheless many
are compatible with Real-Time Operating Systems (such as RTAI
and RTLinux) or transport mechanisms which guarantee the real-
time constraint systems such as ACE, (see under the heading of
‘‘Transport Mechanisms’’ in Section 4.2). These RSFs can support
Soft Real-Time constraints, and offer better temporal behavior by
being more determinist and efficient.

Real time is an important characteristic of many robotics sys-
tems and is the least taken into account in these frameworks [91].
In themajority of these frameworks, the nodesmust carry out non-
critical tasks without real-time restrictions (task planning, for ex-
ample), which are not suitable for control laws.

The reason for this is probably that most of the existing RSFs
have focused on the specific field of autonomous mobile robots,
where real time is not so crucial. It is worth mentioning that ORO-
COS is the only RSF analyzed which tackles the real-time problem
in an adequate manner. Nevertheless, most RSFs should improve
this aspect, which is inherent to the majority of robotic systems.
In order to improve this situation, suitable communication proto-
cols such as CAN (Controller Area Network) should be supported
to handle these restrictions. These types of protocols are not sup-
ported in the technologies studied here, which tend to employ IP
networks. It is also necessary to provide basic libraries to deploy
nodes inmicrocontrollers or simple processors. This heterogeneity,
in the types of nodes and communications technology that these
frameworks use, can complicate other aspects of the distributed
architecture, for example, the naming service or lookup service.

5. Individual analysis and comparative summary

It is important to analyze and compare the RSFs and MASFs, in
order to determine the similarities and differences, and to select
the most suitable alternative for a specific robotics project where
the application of a MAS-based solution is required. Following this
criterion, the RSFs chosen for the comparative study are: ROS,
YARP, OpenRDK, OpenRTM, OROCOS, and ORCA. As a reference,
theywill be comparedwith theMASFs: JADE andMobile-C (in total
this study includes 2 MASFs and 6 RSFs). These two MASFs have
been selected from a wide assortment because they are probably
the most extended nowadays and since they enclose most of the
characteristics and features of MASFs (see Introduction).

Other RSFs are not included in this study since they present
objectives that are very different from the creation of distributed
architectures and are focused on aspects such as the reuse
of drivers and algorithms, and simulation support. Some of
these frameworks are: Player, MOOS, MIRO, JDE+, OpenRave and
CARMEN. Even so, using these RSFs together with other general-
purpose MASFs, such as JADE or Mobile-C, give possible mixed
solutions [92],where the tools of each are used in a complementary
manner. This is another reasonwhy the analysis of JADE orMobile-
C is relevant for this comparison.
There follows a general description of the frameworks that are
the objectives of the study, and finally a comparative study is
summarized.

5.1. JADE (Java Agent Development Framework)

JADE [21,93,94,12] is a general-purpose MASF developed by
Italian Telecom and the University of Parma. It is the de facto
solution for multi-agent systems development. JADE implements
the FIPA Standard, which promotes interoperability with other
platforms. It currently has a high level of maturity, and thereby
serves a wide community, and is well documented.

With JADE, hybrid P2P distributed architectures can be devel-
oped where the agents are hosted in containers of agents called
agencies. Each computer can have one or several agencies, al-
though it is usual to have only one. The agents identify them-
selves bymeans of a unique name that can be changed in execution
and ismanaged by a naming-service system (White-Pages service).
This system does not allow pushing mechanisms (or namespaces),
nor absolute nor relative names. It offers a powerful lookup ser-
vice (Yellow Pages service) that enables it to find agents that pro-
vide services with specific characteristics. JADE uses a concurrency
model by way of processes for agents located in different agencies
and threads for agents located in the same agency.

The agents communicate by means of the simple passing of
messages (agent–agent). The messages used in JADE include vari-
ous fields such as content, intention, ontology and content format.
It also allows themechanismof communication by topic and is use-
ful when a communication channel needs to be disconnected be-
tween different agents. JADE is especially powerful in that it allows
different presentations of the message format, including RDF and
XML. At the transport level, the use of sharedmemorymechanisms
for agents in the same agency also allows high-level transport
mechanisms such as HTTP, with which HTTP off-the-shelf security
mechanisms can be used in the communications. It also supports
othermethods of transport such as RMI, and CORBA (IIOP and JCIP).
When two agents in the same agency communicate, these meth-
ods of transport are not used, but the object is cloned and its new
reference is passed between threads making use of some available
mechanisms in the virtual machine.

The main development language of JADE is Java, although it
also allows other programming languages that are executed in
the virtual Java machine: J2EE, J2ME and J2SE. The execution in a
virtual Javamachine entails certain disadvantages in robotics work
since they are somewhat less suitable for interactive taskswith the
hardware. In addition, a high level of indeterminism is introduced
which complicates its use in systems with Real-Time constraints.
In contrast, the use of a virtual machine provides agents with
great portability and mobility. Different types of virtual JAVA
machines are supported bymany kinds of computers: servers, PCs,
embedded systems etc. Some virtual machines need no operating
system, which makes them sufficiently light for the less powerful
computers. Another advantage of the Java platform is the mobility
of agents via the nodes of the network; this is possible since the
code of an agent is in a language independent from the hardware
platform.

JADE also offers a set of libraries that facilitate typical interac-
tions between agents by means of the use of patterns. It offers a
large number of graphical tools to manage and monitor the status
of agents and tomonitor themessage traffic of the system. Being of
general-purposeMAS technology, neither drivers nor generic algo-
rithms for robotics are implemented. Furthermore, JADE displays
no compatibility with other RSFs in robotics or simulators.

5.2. Mobile-C

This is a framework for the development of specializedMASs in
embedded systems [17,95]. Mobile-C originated in the University



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 815
of California and the Michigan Technological University, and
implements the OMGMASIF standard for multi-agent systems and
also, albeit only partially,3 the FIPA standard, which is why it is
similar to JADE inmany respects. Themost special characteristic of
Mobile-C is that it allows the creation of mobile agents developed
in C/C++. It is a lower level language, which allows greater control
over the hardware of the systems in which it is hosted (agencies).

It is important to emphasize that C/C++ is a language that, dur-
ing its process of compilation, remains strongly coupled to a spe-
cific hardware architecture and operating system. Nevertheless,
Mobile-C is able to implement themobility of agents. To obtain the
independence of the platform, C++ agents do not travel via the al-
ready compiled network but in a form of source code accompanied
with their status variables.

Mobile-C is suitable for strict temporal requirements (Real-
Time) since the C++ interpreter is temporally deterministic and
is also compatible with real-time operating systems such as QNX.
These characteristics can make it suitable for the programming of
robotic systems. Mobile-C supports various operating systems in
addition to QNX, such as Windows, Linux, OSX, and other UNIX
operating systems such as Solaris.

The communication mechanism of Mobile-C is simple asyn-
chronousmessage passing and the transport method used is HTTP.
Mobile-C has a naming service that allows it to locate the different
agents; however it does not allow pushingmechanisms (or names-
paces) or absolute and relative names. It also has a powerful lookup
service, as defined by the FIPA specification, which allows it to find
agents that provide services with specific characteristics.

Mobile-C lacks drivers or generic algorithms for robotics since
its sphere of application is wider. It does not display compatibility
with other RSFs in robotics or simulators and lacks a good set
of simulation, development, deployment and monitoring tools,
which is why these tasks must be made manually or with off-the-
shelf tools.

Mobile-C is used in various situations, such as: multi-sensor
data fusion, multi-camera surveillance for intelligent homes, and
urban traffic-signal control based on MAS.

5.3. ROS (Robot Operating System)

This is an RSF that is notable for being generalist and able to
integrate with other existing technologies [67]. It arose as a spin-
off from Willow Garage in collaboration with the University of
Stanford. The latest release is ROS Electric Emys (30/7/2011) and
a new release ROS Fuerte Turtle is due in March 2012.

This RSF has a numerous, active and growing community,which
probably constitutes the most important factor toward making
ROS one of the most complete RSFs today. Several organizations,
such as companies and universities, are using or collaborating
with ROS in their research, thereby forming a pool of federated
repositories not controlled by Willow Garage. It is noteworthy the
quality and quantity of its documentation and its fast growth. This
has been promoted by the use of global wiki (http://www.ros.org)
support for federated repositories and certain mechanisms for the
automatic generation of documentation.

This RSF possesses a Hybrid P2P distributed architecture
where a master node must be known.4 This master node
handles the naming service and the lookup service. The agent
nodes communicate by means of message passing through topic

3 It is nevertheless sufficient to be interoperable with other technologies, such
as JADE, at the level of ACL-message passing, although not at the level of agent
mobility.
4 Nevertheless a pure P2P architecture withmultiple master nodes is planned for

the Fuerte Turtle Release.
and service mechanisms. Over these services another complex
communication mechanism between nodes is provided for tasks
of longer duration called actions. All these mechanisms are built
over a TCP transport layer using a custom-built binary format
of messages. Nonetheless, interactions with the master node
are made through XML-RPC/TCP and experimental support for
UDP transport is featured. Serial transport implementation (called
Rosserial) is also provided especially for use with microcontrollers
such as Arduino.

The name service let a hierarchical organization of the
network resources like topics, services and nodes. ROS also
has the so-called ‘‘pushing feature’’ to organize and identify
properly these resources. These resources can be referenced in
a relative or absolute manner thereby promoting reusability
and avoiding problems of name conflicts. The master node
provides a service lookup system to search any registered service
that fulfills requirements for certain characteristics. This allows
microcontrollers to belong to the P2P network. These transport
capabilities are weak in comparison with other technologies, such
as YARP.

ROS allows the use of multiple languages, although the
main languages are C++ and Python. Other secondary languages
include Java, LISP, Octave, and LabView. Regarding interoperability
between languages, the connection points are the interfaces of
messages and services. The key feature thatmakes ROS available in
different languages is the set of tools for message code generation
(genmsg and gensrv). These tools take an interface description
language formessages (for topics) or services and generate specific
language code.

The system is focused onworking inUnix-based systems (Linux,
OSX, etc). I. A small ROS library has been also implemented to
be used on AVR microcontrollers using the so-called ‘‘Rosserial’’
transport mechanism, and support for developing nodes using
an EtherCAT network is provided. However, ROS is inadequate
for real-time applications since neither the underlying Operative
System nor the main transport mechanism (TCP/IP) are real-time.
Other RSFs, such as OROCOS, are best suited for real-time control
tasks.

This RSF provides a good number of graphical tools and
command lines for various purposes: development, deployment,
management,monitoring and debugging of the distributed system,
as well as 2D and 3D visualization that allows a virtual view of how
the system interprets the real environment.

ROS implements the multi-process and the multi-thread
concurrent model. The multi-thread concurrent model is useful
when the transport mechanism becomes problematic due to
intensive use of heavy data messages, such as images and clouds
of points. Nodes in threads (called nodelets) provide the major
advantage of making possible a zero-copymechanism of messages
through shared memory. However, they present two important
drawbacks: nodelets are only available for the C++ language, and
shared memory communication has to be explicit in the nodelet
code. Other systems such as YARP enable the transport layer to be
set at runtime.

Regarding certain aspects common toMAS, it isworthmention-
ing that neither agentmobility nor any agent communication stan-
dards are considered in ROS.

The application field of ROS is mainly focused on Service
Robotics. Many successful experiments should be mentioned:
robots that fold towels, several algorithms for robot navigation,
robots that fetch you a beer from the fridge, those that open doors
at home, and so on. In spite of thewidespread growth of ROS in this
application field, it is also used for underwater vehicles, Unmanned
Aerial Vehicles, and industrial manipulators.

One of the strongest points of ROS is the high number of robotics
software packages with drivers and robotics algorithms. Many

http://www.ros.org


816 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
areas are tackled. Numerous examples of low-level robotics al-
gorithm packages include functionality for: Kinematics, Motion
Planning, Bayesian Filtering, machine learning, image process-
ing, and 3D Perception. Other higher level robotics algorithms or
robotics functions include: navigation, objectmanipulation, grasp-
ing, and object recognition. All this variety is made possible by the
philosophy of integration with other robotics libraries (OpenCV,
OpenSLAM, etc). ROS offers a good level of compatibilitywith other
robotics-related frameworks, such as YARP, OpenRTM, OROCOS,
and OpenRave. It also provides a good support of simulators, such
as Stage, Gazebo, and Webots.

With respect to Robot hardware interface, ROS uses the node-
isolation approach (see Section 4.3). It provides a wide collection
of implemented drivers that allow the management of hardware
devices, such as laser rangers, sonars, joysticks, and cameras, and
dozens of mobile and articulated robots (PR2, HERB, HRP2, Erratic,
Qbo, etc).

5.4. YARP (Yet Another Robot Platform)

This is a very mature, light and flexible RSF that originated [4]
in the University of Genoa and The Massachusetts Institute of
Technology (MIT). It is oriented toward humanoid robotic systems,
although it presents an excellent alternative forMAS development.
YARP displays a P2P architecturewith amulti-process concurrency
model through a topics communication mechanism.5

It is highly interoperable, and works in multiple operating
systems including Linux, Windows, OSX and QNX. Nowadays,
YARP is probably the RSF that shows the best capacities for
distributed robotics. It enables the design of Pure P2P architectures
with a partially implemented discovery service. YARP offers a
good naming-service mechanism that allows the definition of
namespaces (pushing), and provides good programming support,
allowing C++, Java, Python, and Matlab.

It is also especially suitable for applications with high
communications requirements since it supports many efficient
transport mechanisms. It is worth mentioning its multicast
support, since it is an option that no other alternative implements
and can be very efficient for sending heavy messages, (e.g. images
and clouds of points) from one node to multiple nodes. The shared
memory transport method is also very powerful and allows zero-
copy messaging between nodes in the same machine.

The message format is proprietary (Bottle Format) but has a
very simple text syntax that can easily be implemented from
other basic platforms by means of sockets. This system offers the
possibility of using many languages such as Python, Octave and
Java since the YARP library is implemented through Simplified
Wrapper and Interface Generator (SWIG).

It offers a large number of implemented drivers and makes
use of a very clear Robot hardware interface based on both the
Node isolation approach and the DLL-API approach. It also contains
various high-level algorithms and has seamless compatibility with
other RSFs such as Player/Stage/Gazebo, ROS, and OROCOS. No
mobile agents are allowed nor are any agent communication
standards implemented.

YARP is recommended for all of the applications mentioned
in Section 2.2. However, it was originally designed to work
on humanoid robots with multiple CPUs and other multi-agent
control systems [4]. It has also been used successfully on
heterogeneous robot teams with high communication bandwidth
requirements due to the intensive use of images [1].

5 YARP is termed a port, although according to the criteria of this article it is
a topic, since it displays a Publish/Subscribe model. Furthermore, it is a system
resource (not exclusively of one agent) and allows Many-to-Many asynchronous
communication to be maintained by means of callbacks.
5.5. OpenRDK

This is an RSF developed by the Università Sapienza Di
Roma [71]. Its main objective is to serve as a research platform for
robotic systems for the RoCoCo research group. OpenRDK is a light
RSF and its target is to find a fast way to develop robotic systems
for little research projects.

It displays a hybrid P2P distributed architecture a dual
concurrency model of threads and processes distinguishing
between the concepts of agents (processes) and components
(threads). The components are executed on the same computer and
pertain to a single agent. The components can be communicated
efficiently by means of shared memory mechanisms.

Agents and components can communicate by means of passing
messages through the Ports and Properties mechanisms. For the
distributed processes, the messages can be sent through TCP or
UDP in XML or binary format. Nevertheless, the implementation of
how an object in C++ is translated to and from these formats must
be implementedmanually for each type of message. This is usually
a disadvantage, although in certain cases it can be useful to have
greater control of the communications operation, for example,
good manual serialization could optimize the communications
performance.

OpenRDK includes a set of console commands for the moni-
toring and logging of the system in execution and a visual man-
agement and monitoring tool (rconsole). The development in this
platform is by means of tools that already exist in Linux such as
CMake and does not include any additional tool.

OpenRDKhas compatibilitywith some simulators such as Stage,
Gazebo, USARSim and Webots. It provides some implemented
drivers for robot management such as Aldebaran’s NaoQi, and a
little set of drivers for scanners, lasers, cameras, etc. No mobile
agents are allowed and no agent communication standard is
implemented.

5.6. OpenRTM (Open Robot Technology Middleware)

This is an RSF developed by the Japanese National Institute of
‘‘Advanced Industrial Science and Technology (AIST)’’. OpenRTM,
also known as OpenRTM-AIST [70], implements the RTC (Robot
Technology Components) standard defined by the OMG [89].
OpenRTM is a mature project with a ten-year history. However,
the current release is the OpenRTM 1.0 (January 2010), although
the candidate OpenRTM 1.1 was released in June 2011. This RSF
is especially accepted in Japan and has a large community and
documentation. One of its drawbacks is that a large proportion of
the documentation is only available in Japanese and has yet to be
fully translated into English.

This is a hybrid P2P architecture constructed on CORBA which
is why it inherits its characteristics of transport, serialization
and interoperability between languages and platforms. OpenRTM
is independent of the version of CORBA used, and supports
several implementations such as OmniORB, ACE/TAO, MICO. At
the transport level, inherently through CORBA, OpenRTM allows
transports such as TCP, UDP, SSL and UNIX Sockets. OpenRTM
uses the naming service of CORBA, where the agents can register.
Nevertheless, it has no lookup nor discovery service to look for a
specific agent with particular characteristics or services.

It provides the port, property and service communication
mechanisms. It supports multiple languages such as C++, Python
and Java thanks to the agnostic interface definition IDL (Intermedi-
ate Description Language) of CORBA. OpenRTM is available inWin-
dows, Linux, and OSX.

OpenRTM offers a good set of development, deployment and
monitoring tools. For example, OpenRTM has a command-line tool
(rtc-template) which facilitates the development by being able to



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 817
generate the proxy code from its IDL interface, for each of the
supported languages. Furthermore, it has a visual tool (RTLink)
integrated in the Eclipse development environment, which allows
block diagram design of the interconnections between the
different nodes and also specifies their initial configuration.

Furthermore, OpenRTM has a good number of drivers imple-
mented for different types of robots, sensors and actuators. It is also
compatible with simulators such as Stage, Gazebo and OpenHPR.
OpenRTM does not implement mobile agent capacities or any
agent communication standard.

5.7. OROCOS (Open Robot Control Software)

This RSF arose from a project promoted by the European
Robotics Research Network (EURON), and was implemented
mainly by the K.U. Leuven in Belgium. OROCOS [66] offers a
very specialized framework for the development of industrial
robotic systems. The framework focuses on the following aspects:
Robot hardware interfaces and drivers of components for real-
time applications. To this end, this RSF allows the use of
various operating systems, including several with real-time
capacities [59]: RTAI, Xenomai, and there are also positive
experiences with other systems such as QNX and WxWorks.
It also allows generic O.S. such as Linux, OSX, Windows, and
Windows CE. This framework provides the infrastructure and
the functionalities to build robotics applications in C++ as the
main language, and other languages such as Python and Simulink.
OROCOS also provides a custom script language to orchestrate
the communications and interactions between nodes and state
machines of each agent.

OROCOS proposes the use of hybrid P2P architecture of nodes
that can communicate by means of port, service, event and
property mechanisms. The distributed system is based on CORBA
as a transport layer. CORBA components are typically presented
by using various implementations of ORB, ACE or TAO, which
presume real-time capabilities. Other transport mechanisms are
supported such as EtherCAT and CANOpen with which real-time
communications can be achieved.

OROCOS can use either the RPC API Isolation or the node-
isolation mechanism as Robot hardware interface. The communi-
cation mechanisms between nodes are: ports, events and services.
It is worth mentioning that even with this kind of Robot hard-
ware interface, OROCOS can achieve real-time capabilities when
the proper operative system (such as Xenomai) and transport layer
(such as EtherCAT, and CANOpen) are used. It uses the naming ser-
vice of CORBA and also provides its own lookup system. It may be
themost industrially oriented RSF studied in this survey andmakes
emphasis in real-time which is one of the most forgotten aspects
in the existing RSFs.

This RSF also provides a good set of robotics algorithms and
libraries which focusing on aspects such as kinematics, motion
control, and Bayesian filtering. Many drivers are also provided for
robots of KUKA and some perception sensors such as cameras and
laser rangers. It is partially integrated with ROS and YARP.

OROCOS have been applied intensively in real-timemulti-agent
control systems for manipulator robots and has also been used
as the software infrastructure in the Team Berlin for the DARPA’s
Urban Challenge.

In the context of MAS development neither agent mobility nor
agent communication standard is implemented.

5.8. ORCA (Open Robot Control Software)

This is a mature RSF developed by the Kungliga Tekniska
Högskolan and currentlymainlymaintained by the Australian Cen-
tre for Field Robotics. Itwas originally a part of theOROCOS project,
although these two branches never managed to merge. It allows
the development of P2P distributed architectures where the nodes
are processes that communicate by means of services. These ser-
vices implement the functionality defined in stable interfaces that
are well known for promoting reuse. ORCA uses the ICE naming
service and has no mechanism of lookup or discovery service.

The supported operating systems are Linux, Windows, OSX and
other UNIX systems. It also supports QNX; nevertheless ORCA does
not offer its ownmechanisms to confront problems with real-time
restrictions.

ORCA uses ICE technology in its transport layer, which is why it
uses the binary serialization mechanism that this technology pro-
vides. It also allows it to make TCP, UDP and SSL communications.
Themain development language is C++, although it has experimen-
tal and limited support for other languages such as Java, Python and
C #.

ORCA provides visual and command-line development tools,
which allow a convenient definition of the architecture. ORCA
offers a good number of off-the-shelf components for the use
of extended devices such as laser rangers, sonars, cameras, and
joysticks. It supports no mobile agents nor does it implement any
agent communication standard.

5.9. Comparative study

The comparative study is at this point summarized in three
tables. For each group of aspects selected in the previous section,
Section 4, a table of results is shown, where rows represent
the RSFs and the columns give the described characteristics.
Taking into account all these aspects and the most significant
differences between the frameworks analyzed, an interpretation
of this comparison in the fields of RSF and MASF is carried out in
the following section.

Table 2 reviews the general aspects discussed in Section 4.1 for
the proposed frameworks.

In accordance with the individual analysis, a comparative
summary of those aspects related to the communications used in
RSFs is presented in Tables 3 and 4. Note that implementation of
the various RSFs and theMASFs have lead to significant differences
and similarities between these aspects.

The last group of significant framework aspects discussed
previously is summarized in Table 5 for the selected RSFs and
MASFs.

As verified in this survey, there is a variety of technologies
suitable for MARS development. For each framework studied,
certain aspects can be highlighted. Mobile-C allows the mobility
of agents programmed in C++. JADE is noted for its compliance
with the FIPA standard and its acceptance by the researcher
and development community, in addition to having the most
powerful lookup service. YARP offers very flexible and optimal
transport methods and shows the best distributed aspects, such
as availability of a pure P2P Architecture and a very powerful
message-passing mechanism (topic-port). ROS stands out for its
transverse and integrating approach to the various RSFs and
provides the wider set of robotics software packages for drivers
and robotics algorithms. It offers great tools, possesses well-
organized quality documentation, and boasts the most powerful
naming service. OpenRDK offers an interesting dual approach of
process (agent)/thread (driver) which is common in robotics but
is seldom implemented in other RSFs. OpenRTM displays a mature
platformwith a large number of integrateddevelopment toolswith
environments, such as Eclipse, and offers a visual language that
greatly facilitates the development tasks.

6. Conclusions

For many of the complex robotic systems application contexts,
a solution based on Multi-Agent Systems is, in our opinion, the



818 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
Table 2
General aspects of the compared frameworks.

Name Organization License Year Latest release OS Programming language

JADE Italian Telecom and
University of Parma

LGPL 1998 JADE 4.1.1 November
2011

JVM Platforms: J2EE, J2SE, J2ME Java JVM languages .NET
languages

Mobile-C University of California and
Michigan Technological
University

BSD 2006 Mobile-C 2.1.4 June
2011

Windows, Linux, OSX,QNX, other
UNIX Systems

C/C++

OpenRDK Università Sapienza di Rome GPL2 2009 OpenRDK 2.1.5 June
2010

Linux, OSX C++

OpenRTM AIST (Japan) LGPL 2002 OpenRTM 1.1 (RC3)
June 2011

Linux, Windows C++, Java, Python

OROCOS K.U.Leuven in Belgium LGPL 2000 OROCOS 2.5 October
2011

Linux/RTAI/Xenomay, OSX,
Windows, WindowsCE

C++, Python, Simulink Orocos
Scripting Language

ORCA Kungliga Tekniska
Högskolan Australian Centre
for Field Robotics

LGPL 2004 ORCA 9.11 Nov. 2009 Linux, Windows, OSX, QNX C++, experimental (Java, Python,
PHP)

ROS Willow Garage BSD 2008 ROS 1.0.1 July 2011 Linux, OSX and Windows (limited
and experimental)

C++, Python, Java, Lisp, Octave

YARP University of Genoa and
Michigan Institute of
Technology

GPL2 2005 YARP 2.3.9 August
2011

Windows, Linux, OSX, QNX4 C/C++, SWIG languages (Python,
Java, Octave)
Table 3
Aspects of distributed systems of the compared frameworks (1).

Name Distributed architecture Node communication mechanisms Naming service Lookup service Discovery service

JADE Hybrid P2P Simple-messages, topics, complex
interactions

Yes Yes No

Mobile-C Hybrid P2P Simple-messages Yes Yes No
ROS Hybrid P2P/Pure P2P

(planned)
Topics, properties, services Yes, pushing, remapping, rel./abs.

addresses
Yes No

YARP Hybrid/Pure P2P Ports, topics Yes, pushing, rel./abs. addresses No No
OpenRDK Hybrid P2P Ports, properties Yes, remapping Yes No
OpenRTM Hybrid P2P Ports, services, Properties Yes No No
OROCOS Hybrid P2P Ports, services, events, properties Yes Yes No
ORCA Hybrid P2P Services Yes No No
Table 4
Aspects of distributed systems of the compared frameworks (2).

Name Multi-agent
or robotics
standard

Message format and type
marshaling

Concurrency
model

Message transport Agent
mobility

Distributed
management
tools

Introspection tools

JADE FIPA XML, RDF, Java
serialization

Processes,
threads

RMI, CORBA, HTTP, JICP Yes Yes GUI and
command-
line

Yes GUI monitoring
and management
tools

Mobile-C FIPA MASIF XML Processes HTTP Yes No No
ROS No Custom binary format Processes,

threads
TCP, serial (own protocol),
UDP (experimental)

No Yes
command-
line

Console monitoring,
Graphical (rviz)

YARP No Custom format
(Bottle)—binary and text

Processes ACE, TCP, UDP, shared
memory (locally), multicast
(LAN), TCP/XML-RPC

No Yes
command-
line

Console monitoring
tools

OpenRDK No Binary (manual), XML
(manual)

Processes,
threads

TCP, UDP, shared memory
(locally)

No Yes
command-
line

Yes

OpenRTM RTC Corba serialization Processes CORBA (OmniORB, ACE/TAO,
MICO) (TCP, UDP, SSL, UNIX)

No Yes
command-
line

Yes

OROCOS No Corba serialization Processes,
threads

CORBA (OmniORB,
ACE/TAO), (TCP, UDP, SSL,
UNIX), MQueue, EtherCAT,
CanOPEN

No No Yes

ORCA No ICE serialization Processes ICE (TCP, UDP, SSL) No No Yes
most suitable. These contexts include heterogeneous mobile robot
teams, robots working in ambient intelligence environments, and
mobile sensor networks based on robots. MASFs and RSFs provide
technological solutions to tackle the MARS development.

It is noteworthy that, as shown in this work, RSFs and MASFs
provide distinct features for the development of MARS, due to
the differences in the areas to which they have been applied so
far. On one hand, MASFs provide a general framework to build
MAS by focusing on features such as agent mobility, interaction
among agent patterns, and ontologies. On the other hand, RSFs
are focused on developing robotics systems: robot hardware
interfaces, algorithms reusability, and introspection mechanisms.



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 819
Table 5
Other aspects of robotics frameworks.

Name Development
tools

Deployment tools Simulation capabilities Robot hardware
interfaces and drivers

Robotics
algorithms

Real-time
capabilities

JADE No Deploy configuration. No Node isolation but no
drivers

No support No

Mobile-C No No No Node isolation but no
drivers

No support Yes

ROS Command-line Command-line, deploy
configuration

Stage, Gazebo Node isolation High support No

YARP No Command-line, deploy
configuration

Stage DLL-API isolation and
node isolation

Medium
support

Yes

OpenRDK No Command-line, deploy
configuration

Webots, USARSim, Stage,
Gazebo

Node isolation Low support No

OpenRTM Command-line
and visual tools

Command-line, deploy
configuration

Stage, Gazebo, OpenHPR RPC-API isolation and
node isolation

Medium
support

No

OROCOS No Deploy configuration No RPC-API isolation and
node isolation

Medium
support

Yes

ORCA Visual tools Deploy configuration Stage, Gazebo RPC-API isolation Medium
support

No
It is also well-known that although MASFs have been applied
historically to wireless sensor networks (WSN), currently RSFs are
threatening to replace MASFs in this field. This is due to the fact
that RSFs present better support for this kind of application due to
their provision of a wider support for sensors and actuators (which
are typical in WSN applications).

Nevertheless, RSFs should acquire features, such as agent
mobility and the use of communication standards, from MASFs.
Moreover the complex interaction mechanisms between agent
nodes (beyond services, topics and ports) defined in FIPA and
implemented in MASFs, such as JADE, clearly supercede the
elemental mechanisms provided by RSFs. Certain RSFs, such
as ROS, already implement some more advanced interaction
protocols, for example those called ‘‘actions’’.

According to the discussion in Section 2.3, at first, using RSFs
andMASFs together in a layered architecture could be conceived as
a feasible approach. However, a strict division of the architecture
in these two layers can be redundant, since the functionality is
duplicated for each layer. It may become counterproductive by
limiting scalability, flexibility and efficiency of the system. Despite
this drawback, RSFs could greatly benefit by incorporating certain
aspects from the MASFs and from the agent paradigm, which
can provide a unified and non-layered architecture to the robotic
system. The analyzed RSFs offer the necessary infrastructure to
develop a MARS.

It has been discussed and demonstrated that even the lower
software layers need the benefits that a P2P distributed and
decoupled architecture provides: naming services, lookup services,
communication mechanisms, etc. Conversely, it is clear that, at
runtime, agent nodes may need to interact with other basic nodes
regardless of the abstraction level of the performed task (drivers,
pure reactive nodes without initiative, etc.), which do require a
more hierarchical architecture.

Robotics software evolution reflects general-purpose software
engineering (GPSE). Some ideas [7–9], such as the component-
based robot software, the Event Driven Architecture, the Model
Driven Architecture, and many of the techniques for robot
distributed communications were tackled for GPSE some years
ago and are being taken into account in current RSFs. Therefore,
it is reasonable imagine that many current ideas of GPSE will be
incorporated into robotics systems in the future.

In the context of MARS, the proposed P2P architecture
clearly reflects Service Oriented Architecture (SOA) 2.0 concepts.
Although SOA is intrinsically tied to Internet and to non-real-
time applications, it would be interesting to investigate into
which features of SOA can be incorporated into current RSFs
for the development of MARS. It is highly probable that other
concepts, such as orchestration of services and business processes
for robotics, will become the focus of research in the near
future.

Acknowledgments

The authors would like to acknowledge the contributions of
Alessandro Farinelli from the University of Verona (Italy).

This work has been partly supported by Spanish government
grants VULCANO (TEC2009-10639-C04-02) and under Andalusian
Government Excellence Research projects P06-TIC-02298 and P08-
TIC-03862 (CARISMA Project).

References

[1] Luis Merino, Fernando Caballero, J. Ramiro Martinez de Dios, Joaquin Ferruz,
Aníbal Ollero, A cooperative perception system for multiple UAVs: application
to automatic detection of forest fires, Journal of Field Robotics 23 (3–4) (2006)
165–184.

[2] Lynne E. Parker, Multiple mobile robot teams, path planning and motion
coordination, in: Encyclopedia of Complexity and Systems Science, 2009,
pp. 5783–5800.

[3] Anders Orebäck, Henrik I. Christensen, Evaluation of architectures for mobile
robotics, Autonomous Robots 14 (1) (2003) 33–49.

[4] Paul Fitzpatrick, Giorgio Metta, Lorenzo Natale, Paul M. Fitzpatrick, Towards
long-lived robot genes, Robotics and Autonomous Systems 56 (1) (2008)
29–45.

[5] David Kortenkamp, Reid G. Simmons, Robotic systems architectures and
programming, in: Bruno Siciliano, Oussama Khatib (Eds.), Springer Handbook
of Robotics, Springer, 2008, pp. 187–206.

[6] A. Farinelli, G. Grisetti, L. Iocchi, Design and implementation of modular
software for programming mobile robots, International Journal of Advanced
Robotic 3 (2006) 037–042.

[7] Blocks, Reusable Building, Component-based robotic engineering (part I),
2009.

[8] Alex Brooks, et al. Towards component-based robotics, in: Intelligent Robots
and Systems, IROS2005, 2005 IEEE/RSJ International Conference on IEEE, 2005,
p.p. 163–168.

[9] B.Y. Davide, Brugali, Azamat Shakhimardanov, Component-based robotic
engineering (part II), 2010.

[10] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa,
Hitoshi Matsubara, Robocup: a challenge problem for AI, AI Magazine 18 (1)
(1997) 73–85.

[11] Janan Zaytoon, Jean-Louis Ferrier, Juan Andrade-Cetto, Joaquim Filipe
(Eds.), ICINCO 2007, Proceedings of the Fourth International Conference on
Informatics in Control, Automation and Robotics, Robotics and Automation 2,
Angers, France, May 9–12 2007, INSTICC Press, 2007.

[12] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, Giovanni Rimassa, JADE: a
software framework for developingmulti-agent applications: lessons learned,
Information & Software Technology 50 (1–2) (2008) 10–21.

[13] C. Bumer, M. Breugst, S. Choy, T. Magedanz, Grasshopper—a universal agent
platform based on OMG MASIF and FIPA standards, in: Proceedings of
the First International Workshop on Mobile Agents for Telecommunication
Applications, MATA’99, Ottawa, Canada, October 1999, pp. 1–18.



820 P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821
[14] Nick Howden, Ralph Rönnquist, Andrew Hodgson, Andrew Lucas, Intelligent
agents—summary of an agent infrastructure, in: 5th International Conference
on Autonomous Agents, 2001.

[15] AaronHelsinger,Michael Thome, ToddWright, Cougaar: a scalable, distributed
multi-agent architecture, in: SMC (2), IEEE, 2004, pp. 1910–1917.

[16] V. Andronache, M. Scheutz, APOC: A Framework for Complex Agents, in: Proc.
of AAAI Spring Symp, AAAI Press, 2003.

[17] Bo Chen, Harry H. Cheng, Joe Palen, Mobile-c: a mobile agent platform for
mobile c/c++ agents, Software: Practice and Experience 36 (15) (2006)
1711–1733.

[18] A. Makarenko, A. Brooks, T. Kaupp, On the benefits of making robotic
software frameworks thin, in: Workshop for Measures and Procedures for the
Evaluation of Robot Architectures and Middleware at IROS’07, 2007.

[19] James Kramer, Matthias Scheutz, Development environments for autonomous
mobile robots: a survey, Autonomous Robots 22 (2) (2007) 101–132.

[20] Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar, Middleware for robotics: a
survey, in: RAM, IEEE, 2008, pp. 736–742.

[21] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa, Developing multi-agent
systemswith JADE, in: Agent Theories, Architectures, and Languages, 2000, pp.
89–103.

[22] M. Drummond, J. Bresina, S. Kedar, The entropy reduction engine: integrating
planning, scheduling, and control, SIGART Bulletin 2 (1991) 61–65.

[23] Ron Sun (Ed.), Cognition and Multi-Agent Interaction: from Cognitive
Modeling to Social Simulation, Cambridge University Press, Cambridge,
ISBN: 0521839645, 2006.

[24] F. Heylighen, Cognitive levels of evolution: from pre-rational tometa-rational,
in: F. Geyer (Ed.), The Cybernetics of Complex Systems: Self-Organisation,
Evolution and Social Change, Intersystems, Salinas, CA, 1991.

[25] Sébastien Picault, Anne Collinot, Designing social cognition models for multi-
agent systems through simulating primate societies, in: Proceedings of
ICMAS’98, 3rd International Conference on Multi-Agent Systems, 1998.

[26] N. Bredeche, J.-D. Zucker, From distributed robot perception to human
topology: a learning model, in: Proceedings of DARS’2000, 2000.

[27] K. Kawamura, T.E. Rogers, X. Ao, Development of a cognitive model of humans
in a multi-agent framework for human–robot interaction, in: AAMAS’02,
Bologna, Italy, July 15–19, 2002.

[28] Xiaocong Fana, Po-Chun Chenb, John Yenc, Learning HMM-based cognitive
load models for supporting human-agent teamwork, Cognitive Systems
Research 11 (1) (2010) 108–119.

[29] Sarvapali D. Ramchurn, DongHuynh, Nicholas R. Jennings, Trust inmulti-agent
systems, The Knowledge Engineering Review 19 (1) (2004) 1–25.

[30] R.A. Brooks, A robust layered control system for a mobile robot, IEEE Journal
of Robotics and Automation RA-2 (1986) 14–23.

[31] E. Gat, Integrating planning and reacting in a heterogeneous asynchronous
architecture for mobile robots, SIGART Bulletin 2 (1991) 17–74.

[32] T.M. Mitchell, J. Allen, P. Chalasani, J. Cheng, O. Etzioni, M. Ringuette, J.C.
Schlimmer, Theo: a framework for self-improving systems, in: K. VanLehn
(Ed.), Architectures for Intelligence, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1991, pp. 323–355.

[33] J.G. Carbonell, C.A. Knoblock, S. Minton, PRODIGY: an integrated architecture
for prodigy, in: K. VanLehn (Ed.), Architectures for Intelligence, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991, pp. 241–278.

[34] P. Langely, K.B. McKusick, J.A. Allen, W.F. Iba, K. Thompson, A design for the
ICARUS Architecture, SIGART Bulletin 2 (1991) 104–109.

[35] B. Hayes-Roth, An integrated architecture for intelligent agents, SIGART
Bulletin 2 (1991) 79–81.

[36] D.R. Kuokka, MAX: a meta-reasoning architecture for ‘X’, SIGART Bulletin 2
(1991) 93–97.

[37] S. Vere, T. Bickmore, A basic agent, Computational Intelligence 6 (1990) 41–60.
[38] J. Laird, A. Newell, P. Rosenbloom, Soar: an architecture for general

intelligence, Artificial Intelligence 33 (1987) 1–64.
[39] K. VanLehn,W. Ball, Goal reconstruction: how teton blends situated action and

planned action, in: K. VanLehn (Ed.), Architectures for Intelligence, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991, pp. 147–188.

[40] S.J. Russell, An architecture for bounded rationality, SIGART Bulletin 2 (1991)
146–150.

[41] T. Lux, The socio-economic dynamics of speculative markets: interacting
agents, chaos, and the fat tails of return distributions, Journal of Economic
Behavior and Organization 33 (1998) 143–165.

[42] Kerstin Dautenhahn, Embodiment and interaction in socially intelligent life-
like agents, in: C. Nehaniv (Ed.), Computation for Metaphors, Analogy, and
Agents, in: LNCS, vol. 1562, 1999, pp. 102–141.

[43] D. Oviedo, M.C. Romero-Ternero, M.D. Hernández, A. Carrasco, F. Sivianes,
J.I. Escudero, Model of knowledge spreading for multiagent systems, in:
12th International Conference on Enterprise Information Systems, Madeira,
Portugal, 8–12 June, 2010.

[44] J. Martínez-Miranda, J. Pavón, Modeling trust into an agent-based simulation
tool to support the formation and configuration of work teams, in: 7th
International Conference on Practical Applications of Agents and Multiagent
Systems, 2009.
[45] A. Carrasco, M.C. Romero-Ternero, F. Sivianes, M.D. Hernandez, J.I. Escudero,
Multi-agent and embedded system technologies applied to improve the
management of power systems, JDCTA: International Journal of Digital
Content Technology and its Applications 4 (1) (2010) 79–85.

[46] P. Smart, T. Huynh, D. Braines, K. Sycara, N. Shadbolt, Collective cognition:
exploring the dynamics of belief propagation and collective problem solving
in multi-agent systems, in: Network-Enabled Cognition: The Contribution of
Social and Technological Networks to Human Cognition, Lulu Press, Raleigh,
North Carolina, USA, 2010.

[47] Alessandro Saffiotti, Mathias Broxvall, Marco Gritti, Kevin LeBlanc, Robert
Lundh, Md. Jayedur Rashid, B.S. Seo, Young-Jo Cho, The peis-ecology project:
vision and results, in: IROS, IEEE, 2008, pp. 2329–2335.

[48] José Luis Sevillano, Jorge L. Falcó, Julio Abascal, Antón Civit Balcells, Gabriel
Jiménez, Roberto Casas, Saturnino Vicente-Diaz, On the design of ambient
intelligent systems in the context of assistive technologies, in: ICCHP, 2004,
pp. 914–921.

[49] A. Saffiotti, S. Coradeschi, Symbiotic robotic systems: humans, robots, and
smart environments, IEEE Intelligent Systems 21 (3) (2006) 82–84.

[50] A. Cesta, G. Cortellessa, R. Rasconi, F. Pecora, M. Scopelliti, L. Tiberio,
Monitoring older peoplewith the robocare domestic environment: interaction
synthesis and user evaluation, Computational Intelligence 27 (1) (2011)
60–82.

[51] Zack J. Butler, Alfred A. Rizzi, Distributed and cellular robots, in: Springer
Handbook of Robotics, 2008, pp. 911–920.

[52] Mark Yim, David Duff, Kimon Roufas, Polybot: amodular reconfigurable robot,
in: ICRA, IEEE, 2000, pp. 514–520.

[53] Francesco Mondada, Giovanni C. Pettinaro, André Guignard, Ivo W. Kwee,
Dario Floreano, Marco Dorigo, Luca Maria Gambardella, Stefano Nolfi,
Jean-Louis Deneubourg, Swarm-bot: a new distributed robotic concept,
Autonomous Robots 17 (2–3) (2004) 193–221.

[54] B. Anthony Kadrovach, Gary B. Lamont, A particle swarm model for swarm-
based networked sensor systems, in: SAC, ACM, 2002, pp. 918–924.

[55] C. Cianci, X. Raemy, J. Pugh, A. Martinoli, ‘‘Communication in a swarm of
miniature robots: the e-puck as an educational tool for swarm robotics’’ on
swarm robotics, 2006, pp. 103–115.

[56] Andrew Howard, Maja J. Mataric, Gaurav S. Sukhatme, An incremental self-
deployment algorithm formobile sensor networks, Autonomous Robots 13 (2)
(2002) 113–126.

[57] Andrew Howard, Maja J. Mataric, Gaurav S. Sukhatme, Mobile sensor network
deployment using potential fields: a distributed, scalable solution to the area
coverage problem, 2002, pp. 299–308.

[58] A. Makarenko, H. Durrant-Whyte, Decentralized data fusion and control in
active sensor networks, in: The 7th International Conference on Information
Fusion, Fusion’04, Stockholm, Sweden, 2004, pp. 479–486.

[59] Bas. Burgers, Automated I/O access with CoE in Orocos, Control Engineering
M.Sc. Thesis, University of Twente, 2010.

[60] Berthold Baeuml, Towards the evaluation of software concepts for complex
mechatronic systems, in: Erwin Prassler, Klas Nilsson, and Azamat Shakhimar-
danov (Eds.), IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS’07,
Workshop on Measures and Procedures for the Evaluation of Robot Architec-
tures and Middleware, November 2007.

[61] Hiroshi Kimura, Yasuhiro Fukuoka, Avis H. Cohen, Adaptive dynamic walking
of a quadruped robot on natural ground based on biological concepts,
International Journal of Robotics Research 26 (5) (2007) 475–490.

[62] Angel Jiménez-Fernandez, Rafael Paz-Vicente, Manuel Rivas, Alejandro
Linares-Barranco, Gabriel Jiménez, Antón Civit, Aer-based robotic closed-loop
control system, in: ISCAS, 2008, pp. 1044–1047.

[63] Patricio Nebot, Joaquín Torres-Sospedra, Rafael J. Martínez, A new HLA-based
distributed control architecture for agricultural teams of robots in hybrid
applications with real and simulated devices or environments, in: Sensors in
Agriculture and Forestry, Sensors 11 (4) (2011) 4385–4400. (special issue).

[64] Zhongquan Xie, Kumiko Miyazaki, Openization, standardization and diversifi-
cation in the case of robotics software sector in Japan, 10, 2009.

[65] Toby H.J. Collett, Bruce A. MacDonald, Brian P. Gerkey, Player 2.0: toward a
practical robot programming framework, in: Proc. of the Australasian Conf. on
Robotics and Automation, ACRA, Sydney, Australia, 2005.

[66] Herman Bruyninckx, Open robot control software: the OROCOS project,
in: ICRA, IEEE, 2001, pp. 2523–2528.

[67] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully B. Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y. Ng, ROS: an open-source robot operating
system, in: ICRA Workshop on Open Source Software, 2009.

[68] G. Metta, P. Fitzpatrick, L. Natale, Yarp: yet another robot platform, in:
Software Development and Integration in Robotics, International Journal of
Advanced Robotic Systems 3 (1) (2006) (special issue).

[69] Rosen Diankov, James Kuffner, Openrave: a planning architecture for
autonomous robotics, Technical Report CMU-RI-TR-08-34, Robotics Institute,
Pittsburgh, PA, July 2008.

[70] Noriaki Ando, Takashi Suehiro, Tetsuo Kotoku, A software platform for
component based rt-system development: OpenRTM-aist, in: SIMPAR’08:
Proceedings of the 1st International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 87–98.

[71] Daniele Calisi, Andrea Censi, Luca Iocchi, Daniele Nardi, OpenRDK: a
modular framework for robotic software development, in: IROS, IEEE, 2008,
pp. 1872–1877.



P. Iñigo-Blasco et al. / Robotics and Autonomous Systems 60 (2012) 803–821 821
[72] Michael R. Benjamin, White paper software architecture and strategic plans
for undersea cooperative cueing and intervention, 2007.

[73] Stefan Enderle, Hans Utz, Stefan Sablatnög, Steffen Simon, Gerhard Kraet-
zschmar, Günther Palm, Miro: middleware for autonomous mobile robots, in:
Telematics Applications in Automation and Robotics, 2001.

[74] J.M. Canas, D. Lobato, P. Barrera, Jde: an open-source schema-based framework
for robotic applications, in: Davide Brugali, Christian Schlegel, Issa A. Nesnas,
William D. Smart, Alexander Braendle (Eds.), IEEE ICRA 2007 Workshop on
Software Development and Integration in Robotics, SDIR-II, IEEE Robotics and
Automation Society, 2007.

[75] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan Williams, Anders
Orebäck, Orca: a component model and repository, in: Davide Brugali
(Ed.), Software Engineering for Experimental Robotics, in: Springer Tracts in
Advanced Robotics, vol. 30, Springer-Verlag, Berlin, Heidelberg, 2007.

[76] Carle Côté, Yannick Brosseau, Dominic Létourneau, Clément Raïevsky, Francois
Michaud, Robotic software integration using MARIE, International Journal of
Advanced Robotic Systems 3 (1) (2006) 055–060.

[77] Michael Montemerlo, Nicholas Roy, Sebastian Thrun, Perspectives on stan-
dardization in mobile robot programming: the Carnegie Mellon Navigation
(CARMEN) toolkit, in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IROS, 2003, pp. 2436–2441.

[78] Byoungyoul Song, et al., An introduction to robot component model for OPRoS
(open platform for robotic services), Autonomous Robots (2008) 592–603.

[79] I.A. Nesnas, Claraty: a collaborative software for advancing robotic technolo-
gies, in: Proc. of NASA Science and Technology Conference, 2007.
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_
NSTC-07-0088.pdf (accessed 25. 01. 12).

[80] Carle Côté, et al., Using MARIE for mobile robot component development
and integration, in: Software Engineering for Experimental Robotics, Springer
Verlag, 2007, pp. 211–230.

[81] Kurt Konolige, Saphira robot control architecture, SRI Int. (22), 2002.
[82] J.L. Blanco Claraco, Development of scientific applications with the mobile

robot programming toolkit: the MRPT reference book, University of Malaga,
2010.

[83] Microsoft, Microsoft robotics developer studio, Writing, 2011.
http://www.microsoft.com/robotics/.

[84] Alessandro Saffiotti, Mathias Broxvall, Ecologies: ambient intelligence meets
autonomous robotics, Cognition (2005) (October).

[85] Douglas Blank, Lisa Meeden, Holly Yanco, The Pyro toolkit for AI and robotics,
Science 27 (1) (2005).

[86] Webots-user guide, Cyberbotics. http://www.cyberbotics.com.
[87] D. Vallejo, J. Albusac, J.A. Mateos, C. Glez-Morcillo, L. Jimenez, A modern

approach to multiagent development, Journal of Systems and Software 83 (3)
(2010) 467–484.

[88] Dejan S. Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan Covaci,
Barry Friedman, KazuyaKosaka, DannyB. Lange, Kouichi Ono,MitsuruOshima,
Cynthia Tham, Sankar Virdhagriswaran, Jim White, Masif: the OMG mobile
agent system interoperability facility, Personal and Ubiquitous Computing 2
(2) (1998).

[89] Object Management Group, Robotic technology component specification
version 1.0, formal/2008-04-04.

[90] Oren Ben-Kiki, Clark Evans, Brian Ingerson, YAML ain’t markup language
(YAML) (tm) 1.0, Working draft, July 2002. YAML.org.

[91] B. Bauml, G. Hirzinger, When hard real-time matters: Software for complex
mechatronic systems, Robotics and Autonomous Systems 56 (1) (2008) 5–13.

[92] Patricio Nebot, Enric Cervera, Agent-based application framework formultiple
mobile robots cooperation, in: ICRA, IEEE International Conference onRobotics
and Automation, IEEE, 2005, pp. 1509–1514.

[93] Fabio Bellifemine, G. Caire, A. Pogg, G. Rimassa, JADE—awhite paper, Technical
Report 3, Telecom Italia Lab, EXP Online, 2003.

[94] Fabio Luigi Bellifemine, Giovanni Caire, Dominic Greenwood, Developing
Multi-Agent Systems with JADE, Wiley, 2007.

[95] Yu-Cheng Chou, David Ko, Harry H. Cheng, An embeddable mobile agent
platform supporting runtime code mobility, interaction and coordination of
mobile agents and host systems, Information and Software Technology 52 (2)
(2010) 185–196.
Pablo Iñigo-Blasco received his Computer Engineering
Degree in 2008. After this, he received his Master’s degree
in Software Engineering and Technology in 2010. For 4
years he worked for the Spanish Research Council (CSIC)
as Software Architect. In 2010 he joined the Department
of Computer Architecture and Technology as Lecturer.
He also became member of the Robotics & Computer
Technology group where he participated in a couple
of national research projects related with mobile robot
navigation. Now he is a Ph.D. Student and his research
work is focused on ‘‘Parallel Computing on Mobile Robots

Navigation and Obstacle Avoidance’’ and also on ‘‘Robotic Software Architectures’’.

Fernando Diaz-del-Rio received his Master’s degree in
Physics (Electronics) and his Ph.D. degree from the Univer-
sity of Seville (Spain) in 1990 and 1997, respectively. After
working for Abengoa-Control-Data and for the University
ofHuelva for some time, he joined theDepartment of Com-
puter Architecture and since 2000he is Associate Professor
at the same University. He has served as Vice Dean of the
Computer Engineering School (2007–10). He is author/co-
author of more than 40 papers in refereed international
journals and conferences, most of them in the field of mo-
bile robot navigation. Bioinspired systems, user accessibil-

ity and embedded systems are other research topics where he has been involved.
He has participated inmore than 20 research projects and contracts (between them,
in EU projects FLEX and CAVIAR).

Ma Carmen Romero-Ternero received the Computer
Science Engineering degree in 1999 and her Ph.D. degree
in Computer Science in 2005. Since 1999 she has worked
on several research projects focused on communications,
data networks and power systems telecontrol at the
University of Seville. She is lecturer and researcher from
2000 in the Electronic Technology Department in the
University of Seville. Currently her research activities
have focused on the study of multi-agent technology for
industrial applications and social simulations.

Daniel Cagigas-Muñiz received his degree in Computer
Science and Ph.D. degree from the University of the Bask
Country (Spain) in 1997 and 2001, respectively. Since 2001
he has been working full-time as a lecturer in the De-
partment of Computer Architecture and Technology, and
researcher of the Robotics & Technology Lab for Rehabil-
itation, at the University of Seville (Spain). His main re-
search interests include robotics, embedded systems and
Artificial Intelligent applied to rehabilitation technologies.
He has participated in more than 10 national and in-
ternational research projects and contracts, including EU

projects CAVIAR and CARDIAC. He is author of over 20 publications in international
journals and conferences in the field of mobile robot navigation and user interface
design.

Saturnino Vicente-Diaz received his degree in Computer
Science and his Ph.D. degree from the University of Seville
(Spain) in 1996 and 2001, respectively. Since 2010 he is
Associate Professor at the same University. Currently, he
is Vice Dean of the Computer Engineering School (2010–).
He has been researcher for the Robotics & Computer
Technology group since 1996. He is author/co-author of
more than 40 papers in refereed international journals
and conferences in the fields of robotics, accessibility,
embedded systems and bioinspired systems. He has
participated in more than 20 research projects and

contracts. He has participated in EU projects FLEX, CAVIAR and CARDIAC.

http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/Nesnas_Issa_C10P2_NSTC-07-0088.pdf
http://www.microsoft.com/robotics/
http://www.cyberbotics.com

	Robotics software frameworks for multi-agent robotic systems development
	Introduction
	On the relationship between multi-agent systems and robotic systems
	Multi-agent system definition
	Applications for multi-agent robotic systems
	Robotics software architecture for MARS

	Robotics software frameworks
	State of technology
	Aspects focused on by existing RSFs
	Existing RSFs overview

	Main aspects for multi-agent robotic systems software development
	General development aspects
	Aspects of distributed systems
	Other aspects of robotics frameworks

	Individual analysis and comparative summary
	JADE (Java Agent Development Framework)
	Mobile-C
	ROS (Robot Operating System)
	YARP (Yet Another Robot Platform)
	OpenRDK
	OpenRTM (Open Robot Technology Middleware)
	OROCOS (Open Robot Control Software)
	ORCA (Open Robot Control Software)
	Comparative study

	Conclusions
	Acknowledgments
	References


